首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ying-Hua Ji 《Physics letters. A》2008,372(21):3874-3877
Taking into account the interactions between electrons and phonons, we study the dynamic behavior of a dissipative mesoscopic circuit for pure initial coherent state of phonon bath modes by virtue of the IWOP technique. It shows that if the bath modes are initially in coherent states, some phenomena like Brownian behavior will appear in mean charge and current of the mesoscopic circuit. The quantum fluctuations of charge and current are constant and irrelevant to the coupled coefficients between electrons and phonons.  相似文献   

2.
本文扼要地介绍了光子数态、热光场态、相干态、压缩态、相位态和中间态等。重点是介绍它们的物理性质。例如,指出相干态在谐振子座标表象中的表示就是带电谐振子在均匀电场中的基态波函数;它的时间演化波包的概率密度分布,形状不随时间变但中心位置随时间作周期振荡。文中对相干态和压缩态等提供了也许是一点新的看法:将相干态、压缩真空态、压缩相干态和相干压缩态等看作是一准玻色子的基态或相干态。而实现的手段可以是原来的幺正算符也可以是投影算符。这样的好处是:(1)对相干态和压缩态间的联系有更深的认识;(2)便于计算和进一步展开等等。文中还对各个态的压缩性、统计性等作了介绍,有的还用图表等演示了它们的非类经典特性。最后,文中还介绍了准概率分布函数、相空间技术以及它们的应用并给出了示例  相似文献   

3.
Various measures of entanglement have triggered considerable interest in the relationship between entanglement measures and other well-known quantities. As a demonstration, the dynamical correlation of negativity and entropy is studied in two coupled quartic oscillators for initial pure and mixed states that are respectively taken to be the products and mixed density matrices of coherent states and squeezed states on each oscillator. The correlation with energy is also considered. It is shown that for the initial pure states with a small magnitude, two negativities are positively correlated with the von Neumann entropy while they are anti-correlated with the energy of each oscillator in the weak coupling regime. For mixed states with a small magnitude the two negativities and the mutual entropy exhibit dominantly positive correlation, whereas those three quantities are dominantly anti-correlated with the sum of energies of two oscillators in the case of weak interactions. Such correlation behaviors in the mixed state with small magnitudes are most striking at the same step in maximal and minimal values and in oscillation. The differences in entropies and negativities between coherent states and squeezed states are discussed. These are useful for quantum entanglement and quantum information processing.  相似文献   

4.
A new approach to investigating a broad class of dynamic states for a quantum oscillator is suggested. It is based on an invariant transformation of the equation to a new time determined by the quantum dispersion of the corresponding state. The squeezed states of a quantum system generated by the ground-state wave function are constructed. In coordinate representation, these states are described by a self-similar wave function localized near a classical trajectory. The statistics of the squeezed state of light is analyzed in the single-mode approximation. The parametric excitation of squeezed states for a quantum harmonic oscillator is considered.  相似文献   

5.
Using the expression of the fidelity for the most general Gaussian quantum states, the quantum fidelity is studied for the states of a harmonic oscillator interacting with an environment, in particular with a thermal bath. The time evolution of the considered system is described in the framework of the theory of open systems based on quantum dynamical semigroups. By taking a correlated squeezed Gaussian state as initial state, we calculate the quantum fidelity for both undisplaced and displaced states. The time evolution of the quantum fidelity is analyzed depending on the squeezing and correlation parameters characterizing the initial Gaussian state and on the dissipation constant and temperature of the thermal bath.  相似文献   

6.
7.
夏小建 《大学物理》2011,30(8):22-24,29
对经典一维受迫谐振子量子化,求解量子化后体系的时间演化算符.应用相空间准概率分布函数,研究了体系的量子特性.研究结果表明,初始为真空态,经过时间演化,系统波函数是一个二维高斯波包;波包中心的振幅和相位受到作用力的调制,成为调幅、调相波,波包中心的运动与经典受迫谐振子的运动形式相同.  相似文献   

8.
We propose an efficient scheme to generate a macroscopical quantum superposition state with a cavity optomechanical system, which is composed of a quantum Rabi-Stark model coupling to a mechanical oscillator. In a low-energy subspace of the Rabi-Stark model, the dressed states and then the effective Hamiltonian of the system are given. Due to the coupling of the mechanical oscillator and the atom-cavity system, if the initial state of the atom-cavity system is one of the dressed states, the mechanical oscillator will evolve into a corresponding coherent state. Thus, if the initial state of the atom-cavity system is a superposition of two dressed states, a coherent state superposition of the mechanical oscillator can be generated. The quantum coherence and their distinguishable properties of the two coherent states are exhibited by Wigner distribution. We show that the Stark term can enhance significantly the feasibility and quantum coherence of the generated macroscopic quantum superposition state of the oscillator.  相似文献   

9.
Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed.  相似文献   

10.
The quantum-classical transition problem is investigated for the quartic oscillator coupled to a thermal reservoir. We show for this model that the combination of relevant diffusion, classical action (represented by the amplitude of an initial coherent state) and the experimental uncertainties is necessary to achieve the classical regime. In order to study the role of limited resolutions of measurement apparatuses on the correspondence between the quantum and classical dynamics, we consider experimental errors due the preparation of the initial state of the quartic oscillator and the inaccuracies in the time measurements. A quantum break time depending on the diffusion constant, the amplitude of the initial coherent state and the inaccuracy of measurements is defined. We found, for this model, a regime where the increasing of diffusion does not anticipate classicality. In such regime, there is a minimum value for the classical action associated to classical behavior of the system.  相似文献   

11.
To investigate the role of initial quantum coherence in work-probability distribution, it is necessary to consider an incomplete or partial measurement, in which the energy cannot be fully discriminated by the detector. In this paper, we use a harmonic oscillator with a coherent or squeezing state to realize this incomplete or partial measurement, and propose a unified framework of quantum work statistics for a closed system with an arbitrary initial state. We find that work is proportional to the change of the real part of the coherent state parameter, i.e., quantum work can be estimated by the coherent state parameter. The resulting work-probability distribution includes the initial quantum coherence, and can be reduced to the result of the traditional two projective energy measurement scheme(TPM) by squeezing the state of the harmonic oscillator. Our measurement scheme reveals the fundamental connections between measurement error and coherent work. By introducing a ‘coherent work-to-noise ratio', we find the optimal measurement error, which is determined by the energy difference between the superposed energy levels. As an application, we consider a driven two-level system and investigate the effects of driving velocity on work statistics. We find that only when the driving velocity matches the transition frequency of the system can initial quantum coherence play an important role.  相似文献   

12.
The quantum sling is defined as a quantum harmonic oscillator with an abruptly vanishing frequency. It is shown in this article that a particle released by such a mechanism remains in acorrelated coherent state, i.e., a quantum state with the minimum dispersion in position and momentum allowed by the Schrödinger-Robertson uncertainty principle. This simple model permits to describe a Schrödinger-cat state (a quantum superposition of macroscopically distinguishable states) released by the sling. The result is a superposition of two correlated coherent states propagating in two opposite directions and with an interference term.  相似文献   

13.
考虑电子与声子间相互作用,研究了两种声子库纯初始态(正则系综与粒子数态)下耗散介观电路的动力学特性.长时间极限下(t→∞):当环境处于热平衡态时,电路系统中的电流和电荷的平均值只与电路所处初始量子态中的平均值有关,与环境无关;环境初态为粒子数态时,电荷与电流平均值随时间的演化特性与环境初始处于热平衡态下时完全一样,表明介观电路中的电荷与电流的平均值与环境量子态的某组占有数无关.电路中电流和电荷的量子涨落不仅与系统的初态有关,还与系统所处环境的量子态及温度有关.一般地说,电路系统与环境的纠缠会 关键词: 介观耗散电路 声子库 量子初态 量子态纯度  相似文献   

14.
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successful protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.  相似文献   

15.
Vasconcelos HM  Sanz L  Glancy S 《Optics letters》2010,35(19):3261-3263
Most quantum computation schemes propose encoding qubits in two-level systems. Others exploit the use of an infinite-dimensional system. In "Encoding a qubit in an oscillator" [Phys. Rev. A 64, 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator. One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices, squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (sometimes called "Schr?dinger cat states"), squeezing, linear optical devices, and homodyne detection.  相似文献   

16.
We introduce a method of quantum tomography for a continuous variable system in position and momentum space. We consider a single two-level probe interacting with a quantum harmonic oscillator by means of a class of Hamiltonians, linear in position and momentum variables, during a tunable time span. We study two cases: the reconstruction of the wavefunctions of pure states and the direct measurement of the density matrix of mixed states. We show that our method can be applied to several physical systems where high quantum control can be experimentally achieved.  相似文献   

17.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

18.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola-Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.  相似文献   

19.
The temporal variation characteristics of nonstationary wave functions are investigated, which enables us to carry out the study of quantum chaotic dynamics with the same starting point as in corresponding classical case, especially to realize the sensitivity of the quantum state with respect to the initial condition. Here the coherent states under the dynamical symmetry of asymmetrical two dimensional harmonic oscillator, in which the minimum uncertainty Principle is satisfied, are usedas an initial state. The formalism of the temporal variation of the expectation values and the uncertainty measurements of canonical variables of the quantum state under the broken symmetry by the additional octupole deformed potential is fulfilled.  相似文献   

20.
Using the expression of the fidelity for the most general Gaussian quantum states, the behaviour of the quantum fidelity is described for the states of a harmonic oscillator interacting with an environment, in particular with a thermal bath. By taking a correlated squeezed Gaussian state as initial state, we calculate the quantum fidelity for both kinds of undisplaced and displaced states, and for different values of the squeezing and correlation parameters and of the environment temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号