首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe doped CdS quantum dots have been prepared using simple precursors by chemical precipitation technique. Fe doped CdS quantum dots have been synthesized by mixing cadmium nitrate, sodium sulfide and adding Fe under suitable conditions. X-ray diffraction analysis reveals that undoped and Fe doped CdS crystallizes in hexagonal structure. The lattice constants of Fe doped CdS nanoparticles decreased slightly with incorporation of Fe and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.8–4.2 nm. HRTEM results show that undoped and 3.75% Fe doped CdS nanoparticles exhibit a uniform size distribution and average size of the nanoparticles is about 2–3 nm. Raman spectra show that 1LO and 2LO peaks of the Fe doped CdS samples are slightly red shifted compared with those of undoped CdS. Optical absorption spectra of Fe doped CdS nanoparticles exhibited red shift.  相似文献   

2.
The interaction between water-soluble zinc sulfide quantum dots (ZnS QDs) and selenite ion was investigated by photoluminescence method. The water-soluble ZnS QDs were synthesized using a simple and fast procedure based on the co-precipitation of nanoparticles in an aqueous solution in the presence of 3-mercaptopropionic acid (MPA), as the capping agent. Fluorescence intensity for MPA–ZnS QDs, with a strong fluorescent emission at about 430 nm, decreased in the presence of selenite. The influence of the effective parameters including pH and temperature was investigated. The results showed that under the optimum conditions, the fluorescence intensity change of QDs was linearly proportional to the selenite concentration in the range 4.0 × 10?5–7.2 × 10?4 mol L?1. Moreover, the quenching mechanism was discussed to be a static quenching procedure.  相似文献   

3.
Fe doped ZnS nanoparticles (Zn1?xFexS; where x = 0.00, 0.03, 0.05 and 0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, ultraviolet–visible and photoluminescence spectrometer. The X-ray diffraction and transmission electron microscope studies show that the size of crystallites is in the range of 2–10 nm. Photocatalytic activities of ZnS and 3, 5 and 10 mol% Fe doped ZnS were evaluated by decolorization of methylene blue in aqueous solution under ultraviolet and visible light irradiation. It was found that the Fe doped ZnS bleaches methylene blue much faster than the undoped ZnS upon its exposure to the visible light as compared to ultraviolet light. The optimal Fe/Zn ratio was observed to be 3 mol% for photocatalytic applications.  相似文献   

4.
杨旭  周宏  沈彬  张玲 《物理化学学报》2010,26(1):244-248
采用低温水热技术,分别以柠檬酸(CA)和巯基丙酸(MPA)为稳定剂,在70℃的水相中合成了单分散的,粒子尺寸约为4 nm的ZnS∶Co半导体量子点.研究了稳定剂、Co2+掺杂剂及其掺杂量对掺杂量子点发光性能和结构的影响.XRD结果表明,Co2+离子主要掺杂在量子点表面,对主体ZnS晶格没有影响.当采用MPA为稳定剂,掺杂量为5%(摩尔分数)时,掺杂量子点的荧光发射强度最高;而同样掺杂量下采用CA为稳定剂时,量子点的荧光发射强度有所下降.循环伏安研究显示,与空白ZnS量子点相比,Co2+离子的掺杂在ZnS的禁带中形成杂质能级,相应地,ZnS∶Co量子点的吸收边发生红移.与未掺杂ZnS量子点相比,掺杂量子点具有较少的表面非辐射复合中心,因而荧光发射强度显著提高.  相似文献   

5.
This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k(q)) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.  相似文献   

6.
ZnO nanorod thin films of different thicknesses and CdS quantum dots have been prepared by chemical method. X-ray diffraction pattern reveals that the CdS quantum dot and ZnO nanorods are of hexagonal structure. Field emission scanning electron microscope images show that the diameter of hexagonal shaped ZnO nanorods ranges from 110 to 200 nm and the length of the nanorod vary from 1.3 to 4.7 μm. CdS quantum dots with average size of 4 nm have been deposited onto ZnO nanorod surface using successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with ZnO nanorod has been used as photo-electrode in quantum dot sensitized solar cells. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 1.10 % and is the best efficiency reported so far for this type of solar cells.  相似文献   

7.
ZnS semiconductor quantum dots have been synthesized using a method involving melt exchange reaction inside the pores of MCM-41 and subsequent reaction with H(2)S. The ZnS quantum dots-MCM-41 composite, which has been studied with XRD, EDS, and BET techniques, is shown to have retained within the pores the formed quantum dots, with a size distribution exhibiting a maximum nanoparticle diameter of ca. 1.8 nm. The structure and the sorption properties of the ZnS/MCM-41 composite have been studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, and surface area measurements. All experimental data reveal that all the final composite products, containing up to 9.3 wt % ZnS as verified by EDS analysis, keep the basic structural characteristics of MCM-41 materials, without significant reduction of their active surface areas. The quantum dot optical properties have been studied with UV-vis, photoluminescence, and photoluminescence excitation spectroscopies providing evidence for the low-dimensional character of the ZnS semiconductor particles.  相似文献   

8.
ZnSe quantum dots doped with Co2+ have been prepared in aqueous solution by a one-pot method using thioglycolic acid as stabilizer. The quantum dots were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV?Cvisible spectrophotometry, and spectrofluorimetry. The results confirmed the quantum dots formed a single cubic phase with zinc blende structure. The average particle size of the quantum dots was approximately 5 nm. Co2+ ions were doped into ZnSe lattice sites by substitution. As a result, infrared (IR) emission of Co2+ 4T2(F) ?? 4A2(F) at approximately 3.5 ??m was detected on excitation with 755 nm radiation.  相似文献   

9.
The effect of laser fluence on the characteristics of Cu nanoparticles, prepared by laser ablation method, is investigated experimentally. 1–6 nm Cu nanoparticles were synthesized by the pulsed laser ablation of a high purity copper bulk in acetone. Effect of laser fluence on the size, morphology and structure of produced nanoparticles has been studied. Pulses of a Q-switched Nd:YAG laser of 1,064 nm wavelengths at 7 ns pulse width at different fluences was employed to irradiate the Cu target in acetone. The UV–Vis–NIR absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the visible region. TEM and SEM micrographs indicate that with increasing the laser fluence the average size of spherical Cu nanoparticles is decreased and only the sample which is produced with the highest fluence shows exceptional behavior. It is found that Cu nanoparticles exhibit photoluminescence emission with single peak due to its interband transition.  相似文献   

10.
Pure and Co-doped ZnO nanoparticles were synthesized with different cobalt levels (1–10 mol%) via adapted sol–gel method using water as solvent and characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and photoacoustic absorption spectroscopy. The results showed that all the samples have hexagonal wurtzite structure, with no evidence of any secondary phases until 10 mol% of the dopant. The average crystallite size of the samples was in the range of 25–50 nm, do not showing significant differences with the increase of the dopant level. However, the band gap energy of the nanoparticles decreases from 2.98 eV (pure ZnO) to 1.95 eV (10 mol% of Co). The photocatalytic activity of the samples was evaluated on the removal of methylene blue under visible light irradiation, which revealed an efficiency reduction by Co-doping ZnO. The antibacterial property was carried out indicating activity of the prepared samples against gram-positive bacteria.  相似文献   

11.
The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.  相似文献   

12.
We report fabrication of stable ZnS nanoparticles (NPs) using a green chemistry concept with watermelon rind extract as capping and stabilizing agent. The cubic structure of the NPs was evidenced by X-ray powder diffraction analysis and electron diffraction studies. Dynamic light scattering and high-resolution transmission electron microscopy studies revealed that the average size of the ZnS NPs was <12 nm. The bandgap of the ZnS nanocrystals was found to be 3.42 eV using ultraviolet–visible (UV–Vis) spectroscopy studies. The energy-dispersive X-ray spectrum of the fabricated ZnS NPs confirmed the elemental Zn and S signals without peaks from any impurities. The biomolecular capping of the ZnS NPs was analyzed using Fourier-transform infrared spectroscopy. An illustrative stabilization mechanism for the ZnS NPs is given using citrulline, a major phytochemical in watermelon rind extract. The obtained ZnS NPs showed good photocatalytic activity towards methylene blue dye degradation.  相似文献   

13.

The reverse microemulsion containing cationic gemini surfactant trimethylene‐1,3‐bis(dodecyldimethyl ammonium bromide) (12‐3‐12, 2Br?) is applied to synthesize ZnS nanospheres. Narrow size distributed ZnS nanospheres with controllable size and uniform morphology are successfully fabricated by direct reaction of ZnCl2 and Na2S in the reverse microemulsion systems. Except for the appearance of large aggregates owing to quantum size effects when the incubation time is 2 h, with increasing the incubation time from 12 to 48 h, the diameter of the ZnS nanosphere can be controlled as 20–25 nm and 140 nm, respectively. X‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐visible absorption spectroscopy are applied to characterize the resulting ZnS nanoparticles. In the system used in the present study uniform nanosphere morphology can be synthesized, with the incubation time as an important factor in controlling the size of as‐prepared products.  相似文献   

14.
Highly luminescent thioglycolic acid-capped CdTe-based core/shell quantum dots (QDs) were synthesized through encapsulating CdTe QDs in various inorganic shells including CdS, ZnS and CdZnS. CdTe/CdS core/shell QDs exhibited a significant redshift of emission peaks (a maximum emission peak of 652 nm for the core/shell QDs and 575 nm for CdTe cores) with increasing shell thickness. In contrast, the redshift of photoluminescence (PL) peak wavelength of CdTe/ZnS QDs was less than 15 nm. The PL peak wavelengths of the core/shell QDs depended strongly on core size and shell thickness. The PL quantum yields (QYs) of the CdTe/CdS core/shell QDs are up to 67 % while that of CdTe/ZnS core/shell QDs is 45 %. A composite CdZnS shell made CdTe cores a high PL QY up to 51 % and broadly adjusted PL spectra (a maximum PL peak wavelength of 664 nm). The epitaxial growth of the shell was confirmed by X-ray powder diffraction analysis and luminescence decay experiments. Because of high PL QYs, tunable PL spectra, and low toxicity from a ZnS surface layer, CdTe/CdZnS core/shell QDs will be great potential for bioapplications.  相似文献   

15.
The effect of preparation methods on the formation of gold doped ceria–lanthana solid solution (Au-CLSS) nanoparticles (NPs) was studied. The nanoparticles were prepared by surfactant assisted precipitation methods viz., co-precipitation (CP) and deposition precipitation (DP) in the presence of cetyltrimethylammonium bromide (CTAB). The as prepared nanoparticles were characterized using BET, FESEM, EDS, Raman, TEM, XRD and UV–Vis. spectroscopic techniques to investigate the preferred method for the preparation of nanoparticles for catalytic applications. The cubic fluorite phase formation of nanoparticles was confirmed by XRD analysis and the average crystallite size was calculated to be around 7–10 nm. Surface area studies revealed that the NPs formed by CTAB assisted method have higher surface area. The morphology of NPs formed by both methods was flaky. Raman studies confirmed that the samples prepared by DP method generated increased oxygen vacancies than those prepared by CP method. In the present work, catalytic oxidation efficiency of the catalysts studied with toluene vapours showed maximum efficiency for Au-CLSS at low temperatures (450 K) as compared to undoped CLSS.  相似文献   

16.
The effect of synthesis conditions (molar ratio between precursors, concentration of surfactants, synthesis temperature) on the size of CdS, ZnS and Ag2S nanoparticles (NPs) stabilized by sodium bis(2-ethylhexyl)succinate and polyoxyethylenesorbitan monooleate was studied. It was established that stabilization by polyoxyethylenesorbitan results in formation of smaller NPs (~8 nm) as compared to that in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (14–60 nm), which is due to the difference between the adsorption rates of these surfactants onto the surface of synthesized NPs. The resulting aqueous dispersions of CdS, ZnS and Ag2S NPs exhibit long-term stability to sedimentation. The nanoparticle size increases insignificantly with temperature increasing to 65–70°C and rises abruptly at higher temperatures. The increase in the ratio between concentrations of precursors (sulfide and metal ions) also results in an increase in NP size, allowing one to synthesize nanoparticles of prescribed sizes. The optical properties of the resulting nanoparticles were studied. The positions of the exciton peaks and the luminescence intensity peaks of the dispersions of synthesized CdS and ZnS NPs were determined.  相似文献   

17.
ZnO fibers with wurtzite structure have been prepared by a sol‐gel method using zinc nitrate hexahydrate and glucose as starting materials. The ZnO fibers with the diameter in the order of 3–5 µm are composed of ZnO nanoparticles with the size of 40~100 nm. The evolution of gel fibers to ZnO fibers was characterized by TG, XRD, FT‐IR, TEM, and SEM techniques in details. In addition, the transformation of ZnO fibers to ZnS fibers also was investigated.  相似文献   

18.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

19.
Antimony phosphate nanoribbons was synthesized and characterized using different techniques. Studies showed that the synthesized antimony phosphate possessed highly crystalline monoclinic SbPO4 phase with an average crystallite size of 14 nm. TEM studies showed that antimony phosphate was present both as nano ribbons and nano particles. It is observed that the nano ribbons have length in the range of 500–700 nm and width around 100–200 nm whereas the nanoparticles size in the range of 1–5 nm. The synthesized nano phosphate was studied for its efficiency as sorbent for uptake of various metal ions including uranyl ion. The results indicated that a clean separation of uranyl ion from its various binary mixtures could be achieved at optimized pH of 4.5 and equilibration period of 1 h using 0.1 g of the sorbent.  相似文献   

20.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号