首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨旭  周宏  沈彬  张玲 《物理化学学报》2010,26(1):244-248
采用低温水热技术,分别以柠檬酸(CA)和巯基丙酸(MPA)为稳定剂,在70℃的水相中合成了单分散的,粒子尺寸约为4 nm的ZnS∶Co半导体量子点.研究了稳定剂、Co2+掺杂剂及其掺杂量对掺杂量子点发光性能和结构的影响.XRD结果表明,Co2+离子主要掺杂在量子点表面,对主体ZnS晶格没有影响.当采用MPA为稳定剂,掺杂量为5%(摩尔分数)时,掺杂量子点的荧光发射强度最高;而同样掺杂量下采用CA为稳定剂时,量子点的荧光发射强度有所下降.循环伏安研究显示,与空白ZnS量子点相比,Co2+离子的掺杂在ZnS的禁带中形成杂质能级,相应地,ZnS∶Co量子点的吸收边发生红移.与未掺杂ZnS量子点相比,掺杂量子点具有较少的表面非辐射复合中心,因而荧光发射强度显著提高.  相似文献   

2.
采用高温有机相包覆技术制备了CdSe/ZnS核壳结构量子点材料,考察了包覆量对量子点材料的光学性能的影响,研究了含脂肪链和芳香基的双硫醇分子1,4-苯二甲硫醇和1,8-辛二硫醇对于具有核-壳结构的CdSe/ZnS量子点材料的修饰作用,考察了修饰作用对于量子点的量子效率和荧光强度等光学性能的影响.实验结果表明:随着硫化锌包覆量的增加,量子点的量子效率及其荧光发射强度明显提高;硫醇的修饰能显著增强量子点的发光强度,随着硫醇浓度的增加,其发光性能增强,但是达到一定程度后,光学性能基本不随硫醇浓度的变化而变化.根据固体核磁共振等实验结果推测:硫醇分子可能部分替代了量子点体系中的正三辛基氧膦配体,稳定了量子点体系,对量子点起修饰保护作用,从而提高了量子点的光学性能.  相似文献   

3.
ZnS and Co-doped ZnS nanoparticles have been prepared by simple chemical precipitation method. Zinc acetate, sodium sulfide, and cobalt nitrate have been used as precursors for the preparation of Co-doped ZnS quantum dots. The X-ray diffraction results revealed that the undoped and Co-doped ZnS quantum dots exhibit hexagonal structure. The average grain size of quantum dot was found to lie in the range of 2.6–3.8 nm. The surface morphology has been studied using scanning electron microscope. The compositional analysis results confirm the presence of Co, Zn and S in the sample. The optical properties of undoped and Co-doped ZnS quantum dots have been studied using absorption spectra. TEM results show that undoped and Co-doped ZnS nanoparticles exhibit a uniform size distribution with average size of 2.5–3.4 nm.  相似文献   

4.
Incorporation of semiconductor nanoparticles into molecularly imprinted polymer provides a sensor material which can be easily shaped and with better selectivity because the bound template would quench the photoluminescence (PL) emission of quantum dots significantly. In this work, artificial receptors of various templates were synthesized with functional monomers such as methacrylic acid (MAA), semiconductor like CdSe/ZnS core-shell derivatized with 4-vinylpyridine and ethylene glycol dimethacrylic acid as the cross-linker. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and template molecules. The photoluminescence emission is unaffected upon incubation of analyte with the blank control polymer.  相似文献   

5.
One of the methods to render CdSe/ZnS core-shell quantum dots(QDots) water-soluble is to functionalize the surface with carboxylate groups by the use of heterobifunctional ligands such as 3-mercaptopropionic acid, where the thiolic end binds onto the outer ZnS shell. However, currently available ligand-exchange procedures starting with TOPO-capped quantum dots often lead to significant loss of quantum yields and poor stability of the colloids in water. As part of our efforts to overcome these problems, we used computational methods to understand the nature of binding between alkyl thiols and ZnS wurtzite surfaces. Guided by the computational results, we modified the ligand-exchange method and increased the reactivity of 3-mercaptopropionic acid toward the ZnS surface in chloroform. The functionlization reaction required only mild reaction conditions and led to QDot nanoparticles that were individually dispersed in water with good colloidal stability. Importantly, the photoluminescence performance of the QDots was highly preserved.  相似文献   

6.
Zhang W  Li Y  Zhang H  Zhou X  Zhong X 《Inorganic chemistry》2011,50(20):10432-10438
Manganese-doped zinc sulfide quantum dots (Mn:ZnS d-dots) with high optical quality, pure dopant emission of 55-65% photoluminescence quantum yield, were synthesized in octadecene media with generic starting materials, namely, zinc (manganese) carboxylic acid salts, S powder, and dodecanethiol (DDT) based on a "nucleation doping" strategy. The optical properties and structure of the obtained Mn:ZnS d-dots have been characterized by UV-vis, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The resulting nearly monodisperse d-dots were found to be of spherical shape with a zinc-blende crystal structure. The influences of various experimental variables, including the reaction temperature for the MnS core nanocluster and ZnS host material, the amount of octadecene (ODE)-S, DDT, as well as Zn/Mn ratio have been systematically investigated. The use of DDT as capping ligand ensured the reproducible access to a stable small-sized MnS core. This paves the way for reproducibly obtaining highly luminescent d-dots. Programmed overcoating temperature for growth of ZnS shell was employed to realize balanced diffusion of the Mn ions in the d-dots.  相似文献   

7.
The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K−1. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.  相似文献   

8.
巯基乙酸为稳定剂在MWCNTs上原位生长CdSe量子点   总被引:1,自引:0,他引:1  
以巯基乙酸作为稳定剂在无毒的溶剂中和较低的温度下实现了CdSe量子点在MWCNTs(多壁碳纳米管)上的原位生长,并用TEM、HRTEM、EDS、XRD、XPS和PL等工具对CdSe量子点-MWCNTs异质结(CdSe-MWCNTs)进行了表征.结果表明, CdSe量子点的晶型为立方晶型,平均粒径大约为4 nm, CdSe-MWCNTs也具有一定的荧光性质.  相似文献   

9.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

10.
The synthesis of a novel water‐soluble Mn‐doped CdTe/ZnS core‐shell quantum dots using a proposed ultrasonic assistant method and 3‐mercaptopropionic acid (MPA) as stabilizer is descried. To obtain a high luminescent intensity, post‐preparative treatments, including the pH value, reaction temperature, reflux time and atmosphere, have been investigated. For an excellent fluorescence of Mn‐doped CdTe/ZnS, the optimal conditions were pH 11, reflux temperature 100°C and reflux time 3 h under N2 atmosphere. While for phosphorescent Mn‐doped CdTe/ZnS QDs, the synthesis at pH 11, reflux temperature 100°C and reflux time 3 h under air atmosphere gave the best strong phosphorescence. The characterizations of Mn‐doped CdTe/ZnS QDs were also identified using AFM, IR, powder XRD and thermogravimetric analysis. The data indicated that the photochemical stability and the photoluminescence of CdTe QDs are greatly enhanced by the outer inorganic ZnS shell, and the doping Mn2+ ions in the as‐prepared quantum dots contribute to strong luminescence. The strong luminescence of Mn‐doped CdTe/ZnS QDs reflected that Mn ions act as recombination centers for the excited electron‐hole pairs, attributing to the transition from the triplet state (4T1) to the ground state (6A1) of the Mn2+ ions. All the experiments demonstrated that the surface states played important roles in the optical properties of Mn‐doped CdTe/ZnS core‐shell quantum dots.  相似文献   

11.
Thiol‐ and solvent‐coordinated cation exchange kinetics have been applied to engineer the composition and crystallinity of novel nanocrystals. The detailed thermodynamics and kinetics of the reactions were explored by NMR spectroscopy, time‐dependent photoluminescence (PL) characterizations and theoretical simulations. The fine structure of the colloidal semiconductor nanocrystals (CSNCs) was investigated by X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine structure (EXAFS). In this way, high‐quality p‐type Ag‐doped ZnS quantum dots (QDs) and Au@ZnS hetero‐nanocrystals with a cubic phase ZnS shell were synthesized successfully.The unprecedented dominant Ag+‐dopant‐induced fluorescence and p‐type conductivity in the zinc‐blende ZnS are reported.  相似文献   

12.
Polydimethylaminoethyl methacrylate (PDMAEMA) was used as a multidentate ligand to modify the surface of CdSe/ZnS core-shell colloidal quantum dots in toluene with trioctylphosphine oxide (TOPO) as the surface ligand. Adsorption of PDMAEMA was accompanied by release of TOPO. The process is free of agglomeration, and the modified nanocrystals become soluble in methanol. The photoluminescence properties are well-preserved in either toluene or methanol.  相似文献   

13.
This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k(q)) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.  相似文献   

14.
Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods.  相似文献   

15.
陶友荣  吴兴才 《大学化学》2017,32(11):51-56
介绍一个研究型综合实验——简易微波水热合成CuInS_2/ZnS复合量子点及其表征。实验通过Cu~(2+)、In~(3+)、Zn~(2+)和S~(2-)离子为原料,以谷胱甘肽作为稳定剂,两步微波水热合成水溶性的CuInS_2/ZnS复合量子点。用X射线衍射法和透射电镜表征它的结构和形貌,用紫外-可见光吸收、荧光光谱、荧光寿命和荧光照片等表征光学性质,并探究温度、时间、成份对荧光性质的影响。通过该实验的设计与实施培养学生科学研究的方法和思维能力。  相似文献   

16.
Controllable self-assembly and properties of nanocomposites based on CdSe/ZnS semiconductor quantum dots (QDs) and tetrapyridylporphyrin molecules (H2P) as well as the dynamics of relaxation processes in these systems were studied for solutions and single nanoobjects in the temperature range of 77–295 K. It was proved that the formation of surface states of different nature is crucial to nonradiative relaxation of exciton excitation in QDs. The efficiency of QD→Н2Р energy transfer was shown to be at most 10–15%. Regularities of photoluminescence (PL) quenching for QDs in nanocomposites in solutions of different polarity correlate with the dependences of PL blinking for single QDs. A scheme was proposed of excited states and main relaxation channels of exciton excitation energy in semiconductor QDs and QD–Н2Р nanocomposites.  相似文献   

17.
The photoluminescence of mercaptoacetic acid (MAA)-capped CdSe/ZnSe/ZnS semiconductor nanocrystal quantum dots (QDs) in SKOV-3 human ovarian cancer cells is pH-dependent, suggesting applications in which QDs serve as intracellular pH sensors. In both fixed and living cells the fluorescence intensity of intracellular MAA-capped QDs (MAA QDs) increases monotonically with increasing pH. The electrophoretic mobility of MAA QDs also increases with pH, indicating an association between surface charging and fluorescence emission. MAA dissociates from the ZnS outer shell at low pH, resulting in aggregation and loss of solubility, and this may also contribute to the MAA QD fluorescence changes observed in the intracellular environment.  相似文献   

18.
MCM-41介孔分子筛掺杂的微孔型聚合物电解质的制备与表征   总被引:6,自引:0,他引:6  
以介孔分子筛MCM-41作填料,丙酮与二甲基甲酰胺混合液为溶剂,用直接造孔成膜的方法制备了微孔型聚合物电解质膜.该法避免使用造孔增塑剂,既简化了制膜工序,又减少电池中副反应的发生,使电池性能得以提高.MCM-41分子筛具有六方有序排列的单一柱状孔道结构和纳米级的粒子尺度,其骨架结构单元与一般聚合物电解质常用的纳米SiO2填料具有相同的化学成分,该分子筛堆积时形成的表面空隙及其独有的一维介孔孔道对聚合物电解质微孔的形成与连通、电导率的提高都具有重要作用,是一种极具实用价值的新型无机填料.  相似文献   

19.
The amphiphilic stearyl methacrylate/methylacrylic acid copolymers (PSMs) were used as phase transfer reagents to convert CdSe/ZnS core-shell quantum dots (QDs) in chloroform to water-soluble PSMs-coated quantum dots (PSM-QDs). The optical properties and stability of PSM-QDs were influenced by the hydrophobic moiety ratios of PSMs, the PSM/QDs mass/volume ratio and the reaction time. The resulting PSM-QDs on optimum reaction conditions retained 60% of the photoluminescence value of the original CdSe/ZnS QDs in chloroform. The carboxylate-based PSM-QDs survived UV irradiation in air for at least 15 days. Upon UV irradiation, the PSM-QDs became about 2 times brighter than the original CdSe/ZnS QDs in chloroform, and the UV-brightened PL can retain the brightness for at least several months. Experimental results further confirmed the stability of PSM-QDs against strong acid, photochemical and thermal treatments. In addition to good performance of PSM-QDs, the synthesis of PSM and the corresponding water-soluble QDs is relatively simple.  相似文献   

20.
In recent two years, organometal halide perovskites quantum dots are emerging as a new member of the nanocrystals family. From the chemical point of view, these perovskites quantum dots can be synthesized either by classical hot-injection technique for inorganic semiconductor quantum dots or the reprecipitation synthesis at room temperature for organic nanocrystals. From a physical point of view, the observed large exciton binding energy, well self-passivated surface, as well as the enhanced nonlinear properties have been of great interest for fundamental study. From the application point of view, these perovskites quantum dots exhibit high photoluminescence quantum yields, wide wavelength tunability and ultra-narrow band emissions, the combination of these superior optical properties and low cost fabrication makes them to be suitable candidates for display technology. In this short review, we introduce the synthesis, optical properties, the prototype light-emitting devices, and the current important research tasks of halide perovsktie quantum dots, with an emphasis on CH3NH3PbX3 (X=Cl, Br, I) quantum dots that developed in our group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号