首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of (2S,5R)-5-hydroxy-6-oxo-1,2-piperidinedicarboxylates (5) and related (3S,6R)-3-hydroxy-6-alkyl-2-oxo-1-piperidinecarboxylates has been developed. The approach is based on the asymmetric hydroxylation of enolates generated from the corresponding N-protected-6-substituted piperidin-2-ones. The utility of 5a as a precursor in the synthesis of (2S,5R)-5-hydroxylysine (1), an amino acid unique to collagen and collagen-like proteins, has also been demonstrated. (2S)-6-oxo-1,2-piperidinedicarboxylates (6) required for hydroxylation studies were prepared in 38-74% yield, starting from conveniently protected aspartic acid as inexpensive chiral adduct. Hydroxylation of 6 to 5 proceeds in high yield and excellent diastereoselectivity by treatment of their Li-enolate with (+)-camphorsulfonyloxaziridine at -78 degrees C. Ring opening of di-tert-butyl (2S,5R)-6-oxo-1,2-piperidinedicarboxylate ((5R)-5a) under reductive conditions afforded the corresponding 1,2-diol (17) in 91%, which was further transformed to (2S,5R)-5-hydroxylysine in four steps (84%). 17 is also a versatile intermediate in the preparation of tert-butyl (2S,5R)-2-[(tert-butoxycarbonyl)amino]-5-hydroxy-6-iodohexanoate (3) and tert-butyl (2S)-2-[(tert-butoxycarbonyl)amino]-4-[(2R)-oxiranyl]butanoate (4), two amino acid derivatives used in the total synthesis of the bone collagen cross-link (+)-pyridinoline (2a).  相似文献   

2.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

3.
Pulsed field gradient spin-echo (PGSE) NMR and cryoscopic measurements have been performed on a series of homogeneous metallocene polymerization catalyst ion-pairs to determine if aggregation is a significant phenomenon under typical polymerization conditions. Cryoscopic measurements on [(Me5Cp)2ZrMe]+[MeB(C6F5)3]- (1), [rac-Et(Indenyl)2ZrMe]+[MeB(C6F5)3]- (2), [(1,2-Me2Cp)2ZrCHTMS2]+[MeB(C6F5)3]- (3), [Me2Si(Me4Cp)(t-BuN)TiMe]+[MeB(C6F5)3]- (4), [Me2Si(Me4Cp)(t-BuN)ZrMe]+[MeB(C6F5)3]- (5), and [Me2C(Fluorenyl)(Cp)ZrMe]+[MeB(C6F5)3]- (6) were carried out in benzene in the 10-18 millimolal concentration range. PGSE measurements, using (p-tolyl)4Si as an internal standard, were also performed on catalyst ion-pairs 1, 4, 6, [(Me5Cp)2ThMe]+[B(C6F5)4]- (7), [(Me2SiCp2)ZrMe]+[MeB(C6F5)3]- (8), and [Cp2ZrMe]+[MeB(C6F5)3]- (9) in the 0.8-10.0 millimolar range. All results are consistent with a 1:1 ion-pair structural model and show little evidence for ion-quadruples or higher-order aggregates.  相似文献   

4.

The peculiarities of the three-component cyclization of ethyl 4,4,4-trifluoroacetoacetate and 1,2-ethanediamines with 3-methylbutan-2-one into hexahydroimidazo[1,2-a]pyridin-5-ones were studied. The reactions proceeded under mild conditions. The use of methyl ketone with a bulky isopropyl substituent increased the stereoselectivity of the transformations, but the reaction with 1,2-diaminopropane was accompanied by the formation 4-[(1-ammoniopropan-2-yl)amino]-1,1,1-trifluoro-4-oxobut-2-en-2-olate as a by-product.

  相似文献   

5.
Reaction of 2,5-diethynylpyridine with dimesitylborane, [(Mes)(2)BH](2)(Mes = mesityl = 2,4,6-Me(3)C(6)H(2)), gave the unexpected tris-hydroboration product 1-[(Mes)(2)B]-2-[Z-1-[(Mes)(2)B]ethylidene]-5-[E-[(Mes)(2)B]vinyl]-1,2-dihydropyridine, which has been structurally characterised by single-crystal X-ray diffraction.  相似文献   

6.
A new neutral dimeric gold(I) complex bearing the 1,2-bis[(2R,5R)-2,5-dimethylphospholanebenzene] [(R,R)-Me-Duphos] ligand has been synthesized which catalyzes the asymmetric hydrogenation of alkenes and imines under mild reaction conditions.  相似文献   

7.
Synthesis and properties of chiral ammonium-based ionic liquids   总被引:1,自引:0,他引:1  
New chiral ammonium-based ionic liquids containing the (1R,2S,5R)-(-)-menthyl group can be easily and efficiently prepared under ambient conditions. The preparation and characterization of trialkyl[(1R,2S,5R)-(-)-menthoxymethyl]ammonium salts is reported. The salts have been demonstrated to be air- and moisture-stable under ambient conditions and can be readily used in a variety of standard experimental procedures. The single-crystal X-ray structure of butyldimethyl[(1R,2S,5R)-(-)-menthoxymethyl]ammonium chloride has been determined. The chiral, room-temperature ionic liquids have been characterized by physical properties such as specific rotation, density, viscosity, thermal degradation, and glass transition temperature. Trialkyl[(1R,2S,5R)-(-)-menthoxymethyl]ammonium chloride prototype ionic liquids have also been found to exhibit strong antimicrobial and high antielectrostatic activities.  相似文献   

8.
N1-[(Z) -2- Amino-1,2-dicyanovinyl]formamidines 1a-d react readily with tosyl isocyanate to form novel 8-amino-3-substituted-5-oxo-7-tosylaminoimidazo[4,5-d][1,3]diazepines 6a-d rather than the 6-cyano-2-oxopurine derivatives 5a-d expected. Compound 5a has been synthesized from 1a by reaction with ethyl chloroformate and base-catalyzed cyclization of the resultant 5-ethoxycarbonylamino-4-(cyanoformimidoyl)imidazole. Treatment of the 5-amino-4-cyanoimidazoles 7a and b with tosyl isocyanate under similar conditions gives the 4-cyano-5-(3′-tosylureido)imidazoles 8a and b , which on treatment with ethanolic ammonia cyclizes to the corresponding isoguanines 10a and b .  相似文献   

9.
Chemically activated CF2ClCHFCH3 and CF2ClCHFCD3 molecules were prepared with 94 kcal mol-1 of vibrational energy by the recombination of CF2ClCHF and CH3(CD3) radicals at room temperature. The unimolecular reaction pathways were 2,3-FH(FD) elimination, 1,2-ClF interchange and 1,2-ClH elimination; the interchange produces CF3CHClCH3(CF3CHClCD3) with 105 kcal mol-1 of vibrational energy. Rate constants for CF2ClCHFCH3 [CF2ClCHFCD3] were (3.1+/-0.4)x10(6) s-1 [(1.0+/-0.1)x10(6) s-1] for 2,3-FH [FD] loss, (1.5+/-0.2)x10(6) s-1 [(8.3+/-0.9)x10(5) s-1] for 1,2-ClF interchange, and (8.2+/-1.0)x10(5) s-1 [(5.3+/-0.6)x10(5) s-1] for 1,2-ClH [DCl] loss. These correspond to branching fractions of 0.55+/-0.06 [0.43+/-0.04] for 2,3-FH [FD] loss, 0.29+/-0.03 [0.35+/-0.04] for 1,2-ClF interchange, and 0.16+/-0.02 [0.22+/-0.02] for 1,2-ClH [ClD] loss. Kinetic-isotope effects were 3.0+/-0.6 for 2,3-FH [FD] loss, 1.6+/-0.3 for 1,2-ClH loss, and 1.8+/-0.4 for 1,2-ClF interchange. The CF3CHClCH3 (CF3CHClCD3) molecules formed by 1,2-FCl interchange react by loss of HCl [DCl] with rate constants of (5.6+/-0.9)x10(7) s-1 [(2.1+/-0.4)x10(7)] s-1 for an isotope effect of 2.7+/-0.4. Density functional theory was employed to calculate vibrational frequencies and moments of inertia for the molecules and for the transition-state structures. These results were used with RRKM theory to assign threshold energies from comparison of computed and experimental unimolecular rate constants. The threshold energy for ClF interchange is 57.5 kcal mol-1, and those for HF and HCl channels are 2-5 kcal mol-1 higher. Experiments with vibrationally excited CF2ClCF2CF3, CF2ClCF2CF2Cl, and CF2ClCF2Cl, which did not show evidence for ClF interchange, also are reported.  相似文献   

10.
Cyclization reactions on 6-[(2-hydroxyphenyl)ethynyl]purines, 6-[(2-hydroxymethylphenyl)ethynyl]purines and 6-[(2-hydroxyphenyl)propyn-1-yl]purines have been studied. 6-(2-Benzofuryl)purines are readily available via a one-pot Sonogashira coupling-cyclization between 6-iodopurine and 2-ethynylphenol. When the same reaction was performed with o-(hydroxymethyl)ethynylbenzene, 6-[isobenzofuran-1(3H)-ylidenemethyl]purine was formed, mainly as the (E)-isomer. Acid catalyzed isomerization of the (E)-compound afforded the (Z)-isomer. The latter compound was also formed from a two-step reaction; Sonogashira coupling with O-silylated alkyne followed by deprotection and subsequent 5-exo cyclization. Sonogashira coupling between 6-halopurines and 2-propynylphenol gave only the alkyne coupling product and no cyclization took place. However, the Sonogashira product was unexpectedly rearranged to 6-(3-phenoxypropa-1,2-dienyl)purines under basic conditions. Theoretical calculations demonstrated that the allenes are more stable than their alkyne isomers.  相似文献   

11.
Treatment of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid (X) with acetic anhydride under refluxing conditions afforded 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]-pyrimido[4,5-d]pyrimidin-5-one acetate (IX). The intermediate X was prepared from 4-chloro-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (V). The reaction of V with the sodium salt of 2-amino-3-hydroxypyridine at room temperature gave 4-(2-amino-3-pyridyloxy)-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (VI). Treatment of VI with a hot aqueous sodium hydroxide solution and subsequent acidification gave X. Involvement of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecaroboxylic acid ethyl ester (VIII) (Smiles rearrangement product) as an intermediate in the above alkaline hydrolysis reaction of VI to X was demonstrated by the isolation of VIII and its subsequent conversion into X under alkaline hydrolysis conditions. Acetylation of VIII with acetic anhydride in pyridine solution gave 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester acetate (XI), which afforded IX on fusion at 220°. This alternative synthesis of IX from XI supported the structural assignment of IX. Fusion of VI gave 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]pyrimido]4,5-d]pyrimidin-5-one (VII). The latter was also obtained when VIII was fused at 210°. Acetylation of VII with acetic anhydride afforded IX.  相似文献   

12.
Two routes from D-glucose to chiral, ring-contracted analogs of the second messenger D-myo-inositol 1,4,5-trisphosphate are described. Methyl alpha-D-glucopyranoside was converted by an improved procedure into methyl 4,6-O-(p-methoxybenzylidene)-alpha-D-glucopyranoside (6) and thence into methyl 2-O-benzyl-3,4-bis-O-(p-methoxybenzyl)-alpha-D-gluco-hexodialdopyranoside (1,5) (14) in four steps. In the first ring-contraction method 14 was converted into methyl 2-O-benzyl-6,7-dideoxy-3,4-bis-O-(p-methoxybenzyl)-alpha-D-gluco-hept-6-enopyranoside (1,5) (15), which on sequential treatment with Cp(2)Zr(n-Bu)(2) followed by BF(3).Et(2)O afforded a mixture of (1R,2S,3S,4R,5S)-3-(benzyloxy)-4-hydroxy-1,2-bis[(p-methoxybenzyl)oxy]-5-vinylcyclopentane (16) and its 4S,5R diastereoisomer 17. Removal of the p-methoxybenzyl groups of 16 and subsequent phosphorylation and deprotection afforded the first target compound, (1R,2R,3S,4R,5S)-3-hydroxy-1,2,4-tris(phosphonooxy)-5-vinylcyclopentane (3). In the second route, intermediate 14 was subjected to SmI(2)-mediated ring contraction to give (1R,2S,3S,4R,5S)-3-(benzyloxy)-4-hydroxy-5-(hydroxymethyl)-1,2-bis[(p-methoxybenzyl)oxy]cyclopentane (20). Benzylation of 20 provided (1R,2S,3S,4R,5S)-3-(benzyloxy)-6-[(benzyloxy)methyl]-4-hydroxy-1,2-bis[(p-methoxybenzyl)oxy]cyclopentane (22) and (1R,2S,3S,4R,5S)-3,4-bis(benzyloxy)-5-(hydroxymethyl)-1,2-bis[(p-methoxybenzyl)oxy]cyclopentane (21), which were elaborated to the target trisphosphates (1R,2R,3S,4R,5S)-3-hydroxy-5-(hydroxymethyl)-1,2,4-tris(phosphonooxy)cyclopentane (4) and (1R,2S,3R,4R,5S)-1,2-dihydroxy-3,4-bis(phosphonooxy)-5-[(phosphonooxy)methyl]cyclopentane (5), respectively. Both 3 and 4 mobilized intracellular Ca(2+), but 4 was only a few fold less potent than D-myo-inositol 1,4,5-trisphosphate, demonstrating that effective mimics can be designed that do not bear a six-membered ring.  相似文献   

13.
A novel amphiphilic phosphinite-oxazoline chiral compound, 2-methyl-4,5-[4,6-O-benzylidene-3-O-bis[4-((diethylamino)methyl)phenyl]phosphino-1,2-dideoxy-alpha-D-glucopyranosyl]-[2,1-d]-2-oxazoline (1), has been prepared from natural D-glucosamine hydrochloride. The newly prepared complex, [Pd(2-methyl-4,5-[4,6-O-benzylidene-3-O-bis[(4-((diethylmethylammonium)methyl)phenyl)]phosphino-1,2-dideoxy-alpha-D-glucopyranosyl]-[2,1-d]-2-oxazoline)(eta3-C3H5)]3+ x 3BF4- (3), is soluble in water and an efficient catalyst for asymmetric allylic substitution reaction in water or an aqueous/organic biphasic medium (up to 85% ee). This catalytic system offers an easy separation of the aqueous catalyst phase from the product phase and allows recycling of the catalyst phase. In addition, compound 1 also works as an effective ligand for the palladium-catalyzed reaction under conventional homogeneous conditions in an organic medium, in which the catalyst (Pd-1 complex) can be recovered by simple acid/base extraction and reused in the second reaction.  相似文献   

14.
Reaction of 2,3,3-trimethyl-and 2,3,3,5-tetramethyl-3H-indole hydrochlorides with methacrylic and crotonic amides gives 3- and 4-methyl-1,2,3,4,10,10a-hexahydropyrimido[1,2-a]indol-2-ones. With perchloric acid these are converted to 1-carbamoylpropyl-3H-indolium perchlorates. The syntheses of 10a-(4-dimethylaminostyryl)- and 10a-[(4-dimethylaminophenyl)butadienyl]-3,10,10-trimethylpyrimido[1,2-a]indol-2-ones have been studied.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 625–627, May, 1990.  相似文献   

15.
分别以5-溴-2-氟苯甲腈(1a)和3-溴苯甲腈(1b)为原料,经Sonogashira偶联,脱三甲基硅基保护基,三分子偶联及水解等5步反应制得中间体2-氟-5-[(4-氧代-3,4-二氢吡咯[1,2-d][1,2,4]三嗪-1-基)甲基]苯甲酸(6a)和3-[(4-氧代-3,4-二氢吡咯[1,2-d][1,2,4]三嗪-1-基)甲基]苯甲酸(6b)。环烷基甲酸经酰氯化,缩合和脱Boc保护基3步反应制得环烷基哌嗪-1-基甲酮(7a~7c)。 6a与NCS(1 eq.)反应制得5-[(6-氯-4氧代-3,4二氢吡咯[1,2-d][1,2,4]三嗪-1-基)甲基]-2氟 苯甲酸(6c); 6a与NCS(2 eq.)反应制得5-[(6,7-二氯-4氧代-3,4二氢吡咯[1,2-d][1,2,4]三嗪-1-基)甲基]-2氟-苯甲酸(6d)。 6a~6d, 6a~6c分别与7a~7c和1-(2-嘧啶基)哌嗪在TBTU(缩合剂),DIPEA(碱)的作用下合成了13个新型吡咯并三嗪酮类PARP-1抑制剂(8a~8m),其结构经1HNMR和MS(ESI)表征。采用Alarm blue法研究了8a~8m对肿瘤细胞MDA-MB-436的抑制活性(IC50)。结果表明:8f, 8g, 8i和8j对MDA-MB-436有较强的抑制活性(IC50=30.5~69.3 nmol·L-1)。  相似文献   

16.
Adenine acidification as a consequence of simultaneous PtII binding to N1 and N7 facilitates deprotonation of the exocyclic N(6)H2 group and permits PtII migration from N1 to N6 under mild conditions. Starting from the trinuclear complex cis-[(NH3)2Pt(N1-9-MeA-N7)2{Pt(NH3)3)}2]6+ (3), stepwise migration of cis-(NH3)2PtII takes place in the alkaline aqueous solution to give initially cis-[(NH3)2Pt(N1-9-MeA-N7)(N6-9-MeA--N7){Pt(NH3)3}2]5+ (4) and eventually cis-[(NH3)2Pt(N6-9-MeA--N7)2{Pt(NH3)3}2]4+ (5) (with 9-MeA = neutral 9-methyladenine, 9-MeA- = 9-methyl-adenine monoanion, deprotonated at N6). The migration process has been studied by 1H NMR spectroscopy, and relevant acid-base equilibria have been determined. 5 has been crystallized as its nitrate salt and has been characterized by X-ray crystallography. The precursor of 3, [(NH3)3Pt (9-MeA-N7)]Cl2.2H2O (2) has likewise been studied by X-ray analysis.  相似文献   

17.
王鹏鹏  李亮  付明伟  葛敏 《合成化学》2016,24(8):735-740
以7-羟甲基-1-四氢萘酮和1-溴-4-氯-苯甲醛为起始原料,经14步反应合成了抗丙肝新药维拉帕维--甲基(2S)-1-【(2S,5S)-2-【9{2[(2S,4S)-1-(2R)-2-[(甲氧基羰基)氨基]-2-苯乙酰基-4-(甲氧基甲基)吡咯烷-2-基]-1H-咪唑 5 基} 1,11-二氢异色烯[4′,3′ :6,7]萘并[1,2-d]咪唑-2-基-5-甲基吡咯烷-1-基】-3-甲基-1-氧丁烷-2-基】氨基甲酸酯,总产率10.14%,其结构经1H NMR和ESI-MS确证。  相似文献   

18.
Cyclization of 1-alkyl-3-[(2Z)-2,4-diaryl-4-oxobut-2-en-1-yl]-1H-benzimidazol-3-ium bromides occurs in the presence of MeONa at a reduced temperature of 5–10°C via a 1,5-electrocyclization mechanism to give 3a,4-dihydro-3H-pyrrolo[1,2-a]benzimidazoles. These are unstable under the reaction conditions and are readily converted to {1-[2-(alkylamino)phenyl]-4-phenyl-1H-pyrrol-3-yl}(phenyl)methanones.  相似文献   

19.
The pentamethylcyclopentadienyl iron cation, generated from [(eta5-C5Me5)Fe(NCMe)3]PF6, triggers the room temperature cycloaromatization of acyclic and alicyclic enediynes, in the presence of either 1,4-cyclohexadiene or terpinene as the hydrogen-atom donor, to give metal-arene products in good to excellent yields. Photolysis of the metal-arene complexes liberates the arene from the metal in excellent yield. The first demonstration of a transition-metal-catalyzed cycloaromatization of conjugated enediynes has been achieved under photochemical conditions utilizing either [(eta5-C5Me5)Fe(NCMe)3]PF6 or [(eta5-C5Me5)Fe(eta6-1,2-(Prn)2C6H4)]PF6 as the catalyst precursor. The use of a metal and light has led to a convenient method for cycloaromatization of a trans-enediyne.  相似文献   

20.
Chiral hydroxyl monophosphane 3 [(2S,3S,4S,5S)-3,4-dihydroxy-2, 5-dimethyl-1-phenylphospholane] and bisphospholanes 5a [1,2-bis[(2S, 3S,4S,5S)-3,4-dihydroxy-2,5-dimethylphospholanyl]benzene] and 5b [1, 2-bis[(2S,3S,4S,5S)-2,5-diethyl-3,4-dihydroxyphospholanyl]benzene] were synthesized from readily available D-mannitol in high yields. Strategies for protection and deprotection of OH-groups in the presence of phosphines have been explored. Rate acceleration in the Baylis-Hillman reaction was observed when a hydroxyl phosphine was used as the catalyst. Rhodium complexes with chiral bisphospholanes are highly enantioselective catalysts for the asymmetric hydrogenation of various kinds of functionalized olefins such as dehydroamino acid derivatives, itaconic acid derivatives, and enamides. An interesting feature of the hydroxyl phospholane system is that hydrogenation of some substrates can be carried out in water with >99% ee and 100% conversion (e.g., itaconic acid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号