首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An S-bridged RhIII2PtII2 tetranuclear complex having two nonbridging thiolato groups, [{Pt(NH3)2}2{Rh(aet)3}2]4+ ([1]4+), in which two fac(S)-[Rh(aet)3] units are linked by two trans-[Pt(NH3)2]2+ moieties, was synthesized by the 1:1 reaction of fac(S)-[Rh(aet)3] (aet = 2-aminoethanethiolate) with trans-[PtCl2(NH3)2] in water. Complex [1]4+ gave both the meso (DeltaLambda) and racemic (DeltaDelta/LambdaLambda) forms, which were separated by fractional crystallization. Of two possible geometries, syn and anti, which arise from the arrangement of two nonbridging thiolato groups, the meso and racemic forms of [1]4+ selectively afforded the anti and syn geometries, respectively. The DeltaLambda-anti and DeltaDelta/LambdaLambda-syn isomers of [1]4+ reacted with Ag+ using two nonbridging thiolato groups to produce a {RhIII2PtII2AgI}n) polymeric complex, {[Ag{Pt(NH3)2}2{Rh(aet)3}2]5+}n) ([2]5+), and a RhIII2PtII2AgI pentanuclear complex, [Ag{Pt2(mu-H2O)(NH3)2}{Rh(aet)3}2]5+ ([3]5+), respectively, which contain octahedral RhIII, square-planar PtII, and linear AgI centers. In [2]5+, each DeltaLambda-anti-[{Pt(NH3)2}2{Rh(aet)3}2]4+ tetranuclear unit is bound to two AgI atoms to form a one-dimensional zigzag chain, indicating the retention of the parental S-bridged structure in DeltaLambda-anti-[1]4+. In [3]5+, two Delta- or Lambda-fac(S)-[Rh(aet)3] units are linked by a [Pt2(mu-H2O)(NH3)2]4+ dinuclear moiety, together with an AgI atom, indicating that two NH3 molecules in [1]4+ have been replaced by a water molecule that bridges two PtII centers, while the parental DeltaDelta/LambdaLambda-syn configuration is retained. The complexes obtained were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses.  相似文献   

2.
Blocking of Watson-Crick or Hoogsteen edges in purine nucleobases by a metal entity precludes involvement of these sites in interbase hydrogen bonding, thereby leaving the respective other edge or the sugar edge as potential H bonding sites. In mixed guanine, adenine complexes of trans-a2PtII (a = NH3 or CH3NH2) of composition trans-[(NH3)2Pt(9-EtA-N1)(9-MeGH-N7)](NO3)2 (1a), trans-[(NH3)2Pt(9-EtA-N1)(9-MeGH-N7)](ClO4)2 (1b), and trans,trans-[(CH3NH2)2(9-MeGH-N7)Pt(N1-9-MeA-N7)Pt(9-MeGH-N7)(CH3NH2)2](ClO4)4*2H2O (2) (with 9-EtA = 9-ethyladenine, 9-MeA= 9-methyladenine, 9-MeGH = 9-methylguanine), this aspect is studied. Thus, in 1b pairing of two adenine ligands via Hoogsteen edges and in 2 pairing of two guanine bases via sugar edges is realized. These situations are compared with those found in a series of related complexes.  相似文献   

3.
A model compound of the second most abundant DNA adduct of the antitumor agent cisplatin has been synthesized and structurally and spectroscopically characterized and its conformational behavior examined: cis-[(NH(3))(2)Pt(9-MeA-N7)(9-EtGH-N7)](NO(3))(2).2H(2)O (9-MeA = 9-methyladenine; 9-EtGH = 9-ethylguanine) crystallizes in the monoclinic system, space group P2(1)/n (No. 14) with a = 7.931(2), b = 11.035(3), c = 26.757(6) ?, beta = 94.94(2) degrees, and Z = 4. The two purine bases adopt a head-to-head orientation, with NH(2) of 9-MeA and CO of 9-EtGH being at the same side of the Pt coordination plane. A theoretical conformational analysis of the complex cis-[(NH(3))(2)Pt(Ade)(Gua)](2+) (Ade = adenine; Gua = guanine) based on molecular mechanics calculations of the nonbonded energy has revealed four minimum-energy zones similar to those derived previously for cis-[(NH(3))(2)Pt(Gua)(2)](2+) (Kozelka; et al. Eur. J. Biochem. 1992, 205, 895). This conformational analysis has allowed, together with the calculation of chemical shifts due to ring effects, the attribution of the two conformers observed for cis-[(NH(3))(2)Pt{d(ApG)}](+) by Dijt et al. (Eur. J. Biochem. 1989, 179, 344) to the two head-to-head conformational zones. The orientation of the two nucleobases in the crystal structure of cis-[(NH(3))(2)Pt(9-MeA)(9-EtGH)](2+) corresponds, according to our analysis, roughly to that preferentially assumed by the minor rotamer of cis-[(NH(3))(2)Pt{d(ApG)}](+).  相似文献   

4.
A series of complexes obtained from the reaction of trans-[(CH3NH2)2PtII] with unsubstituted cytosine (CH) and its anion (C), respectively, has been prepared and isolated or detected in solution: trans-[Pt(CH3NH2)2(CH-N3)Cl]Cl.H2O (1), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)2 (1a), trans-[Pt(CH3NH2)2(C-N3)2].2H2O (1b), trans-[Pt(CH3NH2)2(CH-N3)2](ClO4)(2).2DMSO (1c), trans-[Pt(CH3NH2)2(CH-N1)2] (NO3)(2).3H2O (2a), trans-[Pt(CH3NH2)2(C-N1)2].2H2O (2b), trans-[Pt(CH3NH2)2(CH-N1)(CH-N3)](ClO4)2 (3a), trans-[Pt(CH3NH2)2(C-N1)(C-N3)] (3b), and trans-[Pt(CH3NH2)2(N1-CN3)(N3-C-N1)Cu(OH)]ClO(4).1.2H2O (4). X-ray crystal structures of all these compounds, except 3a and 3b, are reported. Complex 2a is of particular interest in that it contains the rarer of the two 2-oxo-4-amino tautomer forms of cytosine, namely that with the N3 position protonated. Since the effect of PtII on the geometry of the nucleobase is minimal, bond lengths and angles of CH in 2a reflect, to a first approximation, those of the free rare tautomer. Compared to the preferred 2-oxo-4-amino tautomer (N1 site protonated) of CH, the rare tautomer in 2a differs particularly in internal ring angles (7-11 sigma). Formation of compounds containing the rare CH tautomers on a preparative scale can be achieved by a detour (reaction of PtII with the cytosine anion, followed by cytosine reprotonation) or by linkage isomerization (N3-->N1) under alkaline reaction conditions. Surprisingly, in water and over a wide pH range, N1 linkage isomers (3a, 2a) form in considerably higher amounts than can be expected on the basis of the tautomer equilibrium. This is particularly true for the pH range in which the cytosine is present as a neutral species and implies that complexation of the minor tautomer is considerably promoted. Deprotonation of the rare CH tautomers in 2a occurs with pKa values of 6.07 +/- 0.18 (1 sigma) and 7.09 +/- 0.11 (1 sigma). This value compares with pKa 9.06 +/- 0.09 (1 sigma) (average of both ligands) in 1a.  相似文献   

5.
[(en)Pt(mu-OH)2Pt(en)]2+, a dinuclear mu-hydroxo bridged complex (with en = ethylenediamine) crystallizes with excess AgNO3 in high yield as the trinuclear complex [((en)Pt(mu-OH)2Pt(en))Ag](NO3)3 (Pt2Ag, 1) from water. The two halves of the complex are significantly bent (dihedral angle 42.2 degrees ) and the three metals form a triangle with the following distances: Pt1...Pt2, 2.9729(9) angstroms, Pt1...Ag1, 2.818(1) angstroms and Pt2...Ag1, 2.809(1) angstroms. The shortness of the Pt...Ag distances and the dispositions of the three metal ions strongly suggest that dative bonds from Pt to Ag are responsible for the bending of the two halves of the edge-sharing dinuclear [(en)Pt(mu-OH)2Pt(en)]2+ complex. This scenario appears to be yet another cause of bending of edge-sharing dinuclear mu-OH bridged metal complexes of d8 metal ions, adding to those involving Pt...Pt bonding, or anion binding, among others. Comparison with related mu-OH dimers of cis-(NH3)2PtII or (tmeda)PtII (tmeda = N,N,N',N'-tetramethylethylenediamine), which do not display Ag+ binding, suggests that the feature of Ag+ binding is not common to all cis-bis(am(m)ine) complexes of PtII. Interestingly the complete removal of Ag+ from 1 does not lead to the mu-OH dimer but rather to the known mu-OH tetramer [((en)Pt(mu-OH))4]4+.  相似文献   

6.
The coupling between tetramethylguanidine, HN=C(NMe2)2, and coordinated organonitriles in the platinum(II) complexes cis/trans-[PtCl2(RCN)2] (R = Me, Et, Ph) proceeds rapidly under mild conditions to afford the diimino compounds containing two N-bound monodentate 1,3-diaza-1,3-diene ligands [PtCl2{NH=C(R)N=C(NMe2)2}2] (R = Et, trans-1; R = Ph, trans-2; R = Me, cis-3; R = Et, cis-4), and this reaction is the first observation of metal-mediated nucleophilic addition of a guanidine to ligated nitrile. Complexes 1-4 were characterized by elemental analyses (C, H, N), X-ray diffraction, FAB mass spectrometry, IR, and 1H and 13C{1H} NMR spectroscopies; assignment of signals from E/Z-forms of 1,3-diaza-1,3-diene ligands and verification of routes for their Z right harpoon over left harpoon E isomerization in solution were performed using 2D 1H,1H-COSY, 1H,13C-HETCOR, and 1D NOE NMR experiments. The newly formed and previously unknown 1,3-diaza-1,3-dienes NH=C(R)N=C(NMe2)2 were liberated from the platinum(II) complexes [PtCl2{NH=C(R)N=C(NMe2)2}2] (1-3) by substitution with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) to give the uncomplexed HN=C(R)N=C(NMe2)2 species (5-7) in solution and the solid [Pt(dppe)2](Cl)2. The former were utilized in situ, after filtration of the latter, in the reaction with 1,3-di-p-tolylcarbodiimide, (p-tol)N=C=N(tol-p), in CDCl3 to generate (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe2. The formulation of 8-10 is based on ESI-MS, 1H, 13C{1H} NMR, and X-ray crystal structures determined for 9 and 10. The reaction of 1,3-diaza-1,3-dienes with 1,3-di-p-tolylcarbodiimide, described in this article, constitutes a novel synthetic approach to a useful class of heterocyclic species like 1,6-dihydro-1,3,5-triazines.  相似文献   

7.
The reaction of cis-[Pt(NH3)2(3-pyhaH)2]2+ (3-pyhaH = 3-pyridinehydroxamic acid) and cis-[Pt(NH3)2(4-pyhaH)2]2+ (4-pyhaH = 4-pyridinehydroxamic acid) with Cu(II), Ni(II) or Zn(II) in aqueous solution affords novel heterobimetallic pyridinehydroxamate-bridged complexes, {cis-[Pt(NH3)2(mu-3-pyha)M(mu-3-pyha)].SO4.xH2O}n and {cis-[Pt(NH3)2(mu-4-pyha)M(mu-4-pyha)].SO4.xH2O}n respectively. The crystal and molecular structure of one of these, {cis-[Pt(NH3)2(mu-3-pyha)Cu(mu-3-pyha)]SO4.8H2O}n 3a, has been determined and was found to be a novel heterobimetallic wave-like coordination polymer, the structure of which contains interlinked pyridinehydroxamate-bridged repeating units of Pt(II) and Cu(II) ions in slightly distorted square-planar N4 and O4 coordination environments respectively and extensive hydrogen-bonding through the Pt ammines and the deprotonated hydroxamate O and via the O of the SO4(2-) counterions and the H(N) of the hydroxamate moiety. Spectrophotometric and speciation studies on the other heterobimetallic systems confirm that very similar species are being formed in solution and based on elemental analysis and spectroscopic results analogous complexes are formed in the solid-state. In this paper, we report the first examples of coordination polymers incorporating both Pt(II)/Cu(II), Pt(II)/Ni(II) and Pt(II)/Zn(II) and containing pyridinehydroxamic acids as bridging scaffolds.  相似文献   

8.
A series of pyrazine (pz) complexes containing cis-(NH(3))(2)Pt(II), (tmeda)Pt(II) (tmeda = N,N,N',N'-tetramethylethylenediamine), and trans-(NH(3))(2)Pt(II) entities have been prepared and characterized by X-ray crystallography and/or 1H NMR spectroscopy. In these compounds, the pz ligands act as monodentate (1-3) or bidentate bridging ligands (4-7). Three variants of the latter case are described: a dinuclear complex [Pt(II)]2 (4b), a cyclic tetranuclear [Pt(II)](4) complex (5), and a trinuclear mixed-metal complex [Pt2Ag] (7). Mono- and bidentate binding modes are readily differentiated by 1H NMR spectroscopy, and the assignment of pz protons in the case of monodentate coordination is aided by the observation of (195)Pt satellites. Formation of the open molecular box cis-[{(NH3)2Pt(pz)}4](NO3)8.3.67H2O (5) from cis-(NH3)2Pt(II) and pz follows expectations of the "molecular library approach" for the generation of a cyclic tetramer.  相似文献   

9.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   

10.
The reactions of [Zr(NMe2)4]2 with triamido-triazacyclonane ligand precursors, {NH(Ph)SiMe2}3tacn (H3N3[9]N3) and {NH(C6H4F)SiMe2}3tacn (H3N3-F[9]N3), led to the formation of complexes [Zr(NMe2)2{N(Ph)SiMe2}2{NH(Ph) SiMe2}tacn], 1, and [Zr(NMe2)2{N(o-C6H4F)SiMe2}2{NH(o-C6H4F)SiMe2} tacn], 2, where the zirconium is coordinated to two remaining dimethylamido ligands and to a dianionic tacn-based ligand, [{N(Ph')SiMe2}2{NH(Ph')SiMe2}tacn]2-, that formed from deprotonation of two amine pendent arms of the ligands' precursors. The third pendent arm of H3N3[9]N3 and H3N3-F[9]N3 remains neutral and not bonded to the zirconium. Treatment of 1 with NaH led to the synthesis of [Zr(NMe2){N(Ph)SiMe2}2tacn], 3, that results from the cleavage of the N-Si bond of the original neutral pendent arm. Complexes [ZrCl{N(Ph')SiMe2}2tacn] (Ph' = C6H5, 4, and C6H4F, 5) have been obtained by reactions of ZrCl4 with {MN(Ph')SiMe2}3tacn.2THF (M = Li, Na). Reactions of 4 and 5 with LiC triple bond CPh led to the syntheses of [Zr(CCPh){N(Ph')SiMe2}2tacn] (Ph' = C6H5, 6, and C6H4F, 7). The solid-state structure of 3 shows a chiral metal center.  相似文献   

11.
A number of pivalamidate bridged dinuclear [PtII2(RNH2)4(NHCOtBu)2]2+, [PtIII2LL (RNH2)4(NHCOtBu)2]n+ (2RNH2 = 2NH3, 1,2-ethylenediamine, 1,2-diaminocyclohexane; L, L' = NO3-, H2O, or ketonate), trinuclear [{PtII(dap)(NHCOtBu)2}2PdIII]3+ (dap = 1,2-diaminopropane), tetranuclear [{PtII2(NH3)2(DACH)(NHCOtBu)2}2]4+ (DACH = 1,2-diaminocyclohexane), pentanuclear [{Pt2(C5H7O)(NH3)2Cl2(NHCOtBu)2}2PtCl4], and hexanuclear [Pt2(NH3)2(en)(NHCOtBu)2Pt(NO2)4]2 platinum complexes containing Pt(II)-Pt(II), Pt(II)-Pt(III), Pt(II)-Pd(III), and Pt(III)-Pt(III) interactions have been prepared and structurally characterized. The Pt-Pt interactions are characteristic of covalent, dative, or orbital symmetric Pt-Pt bonds. The dimeric Pt(III) complexes are able to activate C-H bonds of ketones to afford ketonate platinum(III) complexes. The Pt-Pt bonds are either doubly amidate-bridged or ligand unsupported. Their distances are 2.99-3.22 A for Pt(II)-Pt(II), 2.59-2.72 A for Pt(III)-Pt(III), 2.98 A for Pt(II)-Pt(III), and 2.66 A for Pt(II)-Pd(III) bonds depending on the oxidation states of the two metals and the ancillary ligands.  相似文献   

12.
Crosslinking of three different model nucleobases (9-ethyladenine, 9-EtA; 9-ethylguanine, 9-EtGH; 1-methyluracil, 1-MeU) by two linear trans-aPtII (a = NH3 or CH3NH2) entities leads to a flat metal-modified base triplet, trans,trans-[(NH3)2Pt(1-MeU-N3)(mu-9-EtA-N7,N1)Pt(CH3NH2)2(9-EtGH-N7)]3+ (4b). Upon hemideprotonation of the 9-ethylguanine base at the N1 position. 4b spontaneously dimerizes to the metalated nucleobase sextet 5, [(4b)(triple bond)(4b-H)]5+. In this dimeric structure a neutral and an anionic guanine ligand, which are complementary to each other, are joined through three H bonds and additionally by two H bonds between guanine and uracil nucleobases. Four additional interbase H bonds maintain the approximate coplanarity of all six bases. The two base triplets form an exceedingly stable entity (KD = 500 +/- 150 M(-1) in DMSO), which is unprecedented in nucleobase chemistry. The precursor of 4b and several related complexes are described and their structures and solution properties are reported.  相似文献   

13.
Red-black [HIPTN3N]Cr (1) ([HIPTN3N]3- = [(HIPTNCH2CH2)3N]3- where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3 = HexaIsoPropylTerphenyl) can be prepared from CrCl3, while green-black [HIPTN3N]Cr(THF) (2) can be prepared from CrCl3(THF)3. Reduction of {1|2} (which means either 1 or 2) with potassium graphite in ether at room temperature yields [HIPTN3N]CrK (3) as a yellow-orange powder. There is no evidence that dinitrogen is incorporated into 1, 2, or 3. Compounds that can be prepared readily from {1|2} include red [HIPTN3N]CrCO (4), blood-red [HIPTN3N]CrNO (6), and purple [HIPTN3N]CrCl (7, upon oxidation of {1|2} with AgCl). The dichroic (purple/green) Cr(VI) nitride, [HIPTN3N]CrN (8) was prepared from Bu4NN3 and 7. X-ray studies have been carried out on 4, 6, and 7, and on two co-crystallized compounds, 7 and [HIPTN3N]CrN3 (65:35) and [HIPTN3N]CrN3 and 8 (50:50). Exposure of a degassed solution of {1|2} to an atmosphere of ammonia does not yield "Cr(NH3)" as a stable and well-behaved species analogous to Mo(NH3). An attempt to reduce dinitrogen under conditions described for the catalytic reduction of dinitrogen by [HIPTN3N]Mo compounds with 8 yielded a substoichiometric amount (0.8 equiv) of ammonia, which suggests that some ammonia is formed from the nitride but none is formed from dinitrogen.  相似文献   

14.
Tsai ML  Hsieh CH  Liaw WF 《Inorganic chemistry》2007,46(12):5110-5117
Addition of the Lewis base [OPh]- to the THF solution of Roussin's red ester [Fe(mu-SC6H4-o-NHCOPh)(NO)2]2 (1) and [Fe(mu-SC6H4-o-COOH)(NO)2]2 (2), respectively, yielded the EPR-active, anionic {Fe(NO)2}9, [(SC6H4-o-NCOPh)Fe(NO)2]- (3) with the anionic [SC6H4-o-NCOPh]2- ligand bound to the {Fe(NO)2} core in a bidentate manner (S,N-bonded) and [(SC6H4-o-COO)Fe(NO)2]- (4) with the anionic [SC6H4-o-COO]2- ligand bound to the {Fe(NO)2} core in a bidentate manner (S,O-bonded), characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. In contrast to the bridged-thiolate cleavage yielding the neutral {Fe(NO)2}9, [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (Im=imidazole), by addition of 2 equiv of imidazole to complex 1 observed in the previous study, the addition of the stronger sigma-donating and pi-accepting PPh3 ligand triggered the reductive elimination of bridged thiolates of complex 1 to yield the neutral {Fe(NO)2}10, [(PPh3)2Fe(NO)2]. These results unambiguously illustrate one aspect of how the nucleophile L (L=imidazole, PPh3, [OPh]-) functions to control the reaction pathways (bridged-thiolate cleavage, reductive elimination, and deprotonation) upon the reaction of complex 1 and the nucleophile L. The EPR-active, dimeric {Fe(NO)2}9 dinitrosyl iron complex (DNIC) [Fe(mu-SC7H4SN)(NO)2]2 (6), with S and N atoms of the anionic [-SC7H4SN-]- (2-benzothiozolyl thiolate) ligands bound to two separate {Fe(NO)2}9 cores, was also synthesized from reaction of bis(2-benzothiozolyl) disulfide and [(NO)2Fe(PPh3)2]. A straightforward reaction of complex 6 and 4 equiv of [N3]- conducted in THF led to the anionic {Fe(NO)2}9, [(N3)2Fe(NO)2]- (7). Conclusively, the EPR-active, {Fe(NO)2}9 DNICs can be classified into the anionic {Fe(NO)2}9 DNICs with S/N/O ligation, the neutral {Fe(NO)2}9 DNIC with one thiolate and one neutral imidazole ligation, and the cationic {Fe(NO)2}9 DNICs with the neutral N-/P-containing coordinated ligands.  相似文献   

15.
[{Micro-(phthalazine-N2:N3)}Fe2(micro-CO)(CO)6](1) reacts with organolithium reagents, RLi (R = CH3, C6H5, p-CH3C6H4, p-CH3OC6H4, p-CF3C6H4, p-C6H5C6H4), followed by treatment with Me3SiCl to give the novel diiron carbonyl complexes with a saturated N-N six-membered diazane ring ligand, [{C6H4CH(R)NNCH2}Fe2(C=O)(CO)6](2, R = CH3; 3, R = C6H5; 4, R =p-CH3C6H4; 5, R =p-CH3OC6H4; 6, R =p-CF3C6H4; 7, R =p-C6H5C6H4). Compounds 4 and 5 were treated with [(NH4)2Ce(NO3)6] to afford the aryl-substituted phthalazine-coordinated diiron carbonyl compounds [(micro-{1-(p-CH3C6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](8) and [(micro-{1-(p-CH3OC6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](9), respectively. The structures of complexes 4 and 9 have been established by X-ray diffraction studies.  相似文献   

16.
Isocytosine (ICH) exists in solution as two major tautomers, the keto form with N1 carrying a proton (1a) and the keto form with N3 being protonated (1b). In water, 1a and 1b exist in equilibrium with almost equal amounts of both forms present. Reactions with a series of Pd(II) and Pt(II) am(m)ine species such as (dien)Pd(II), (dien)Pt(II), and trans-(NH(3))(2)Pt(II) reveal, however, a distinct preference of these metals for the N3 site, as determined by (1)H NMR spectroscopy. Individual species have been identified by the pD dependence of the ICH resonances. pK(a) values (calculated for H(2)O) for deprotonation of the individual tautomers complexes are 6.5 and 6.4 for the N3 linkage isomers of dienPd(II) and dienPt(II), respectively, as well as 6.2 and 6.0 for the N1 linkage isomers. The dimetalated species [(dienM)(2)(IC-N1,N3)](3+) (M = Pd(II) or Pt(II)) are insensitive over a wide range of pD. The crystal structure analysis of [(dien)Pd(ICH-N3)](NO(3))(2) is reported. Ab initio calculations have been performed for tautomer compounds of composition [(NH(3))(3)Pt(ICH)](2+), cis- and trans-[(NH(3))(2)PtCl(ICH)](+), as well as trans-[(NH(3))(2)Pt(ICH)(2)](2+). Without exception, N3 linkage isomers are more stable, in agreement with experimental findings. As to the reasons for this binding preference, an NBO (natural bond orbital) analysis for [(NH(3))(3)Pt(ICH-N3)](2+)strongly suggests that intramolecular hydrogen bonding between trans-positioned NH(3) ligands and the two exocyclic groups of the ICH is of prime importance. The calculations furthermore show a marked pyramidalization of the NH(2) group of ICH in the complex once the heterocyclic ligand forms a dihedral angle <90 degrees with the Pt coordination plane.  相似文献   

17.
A heteronuclear complex of composition trans-[(NH(3))(2)Pt(N4-1-MeC(-)-N3)(2)Cu(H(2)O)(2)](ClO(4))(2) (1a), with 1-MeC(-) = 1-methylcytosinate, has been prepared and characterized by X-ray crystallography. 1a (Cu,Pt) is a linkage isomer of a previously described compound with the two metals inverted (Pt,Cu). The intermetallic distances are significantly different in the two types of compounds, 2.6109(9) A in 1a, yet 2.49-2.56 A in several forms of the linkage isomer. When heated in water in the presence of air, 1a is converted in low yield into diplatinum(III) compounds [(H(3)N)Pt(1-MeC(-)-N3,N4)(4)Pt(NH(3))](2+) (2a) and [(H(2)O)Pt(1-MeC(-)-N3,N4)(4)Pt(NH(3))](2+) (2b), which were crystallized as ClO(4)(-) salts. In a modified procedure a third representative of this group of diplatinum(III) compounds, [(O(2)N)Pt(1-MeC(-)-N3,N4)(4)Pt](+) (2c) was isolated. All three compounds contain the four bridging 1-MeC ligands in a head,tail,head,tail arrangement with Pt-Pt distances (2.4516(7)-2.4976(9) A) that are the shortest ones among diplatinum(III) compounds containing nucleobases.  相似文献   

18.
The synthesis and characterization of 10-(o-alkoxyphenyl)phenoxarsines 2-ROC6H4As(C6H4)2O (R = H, Me, and Pri, As(C6H4)2O = phenoxarsine) and their platinum(II) and palladium(II) complexes cis-[PtCl2{2-PriOC6H4As(C6H4)2O-kappaAs}2] (1), trans-[PdCl2{2-PriOC6H4As(C6H4)2O-kappaAs}2] (2), cis-[PtCl2{2-HOC6H4As(C6H4)2O-kappaAs}2] (3), cis-[PdCl2{2-HOC6H4As(C6H4)2O-kappaAs}2] (4), cis-[PtI2{2-MeOC6H4As(C6H4)2O-kappaAs}2] (5), and trans-[PdCl2{2-MeOC6H4As(C6H4)2O-kappaAs}2] (6) are reported. The chelate complex cis-[Pt{2-OC6H4As(C6H4)2O-kappaAs,O}2] (7) is also described. The molecular structures of 1-4 and 7 were determined. The short As...O intramolecular interaction found in complexes 1-4 in the solid state was also verified by calculations at the B3LYP/LANL2DZ level for complex 2 and for 10-(o-isopropoxyphenyl)phenoxarsine in the gas phase, and this suggests that the interaction is a characteristic of the ligand rather than a packing effect. Calculations at the B3LYP/LANL2DZ and Oniom(B3LYP/LANL2DZ:uff) levels for complexes 1-4 showed that the solvent plays a crucial role in the crystallization (through geometry constraints) of the kinetically stable cis isomers.  相似文献   

19.
Treatment of trans-[PtCl4(RCN)2] (R = Me, Et, Ph, NEt2) with 2 equiv of the amidine PhC(=NH)NHPh in a suspension of MeCN (R = Me), CHCl3 (R = Et, Ph), or in CHCl3 solution (R = NEt2) results in the formation of the imidoylamidine complexes trans-[PtCl4{NH=C(R)N=C(Ph)NHPh}2] (1-4) isolated in good yields (66-84%). The reaction of soluble complexes 3 and 4 with 2 equiv of Ph3P=CHCO2Me in CH2Cl2 (40 degrees C, 5 h) leads to dehydrochlorination resulting in a chelate ring closure to furnish the platinum(IV) chelates [PtCl2{NH=C(R)NC(Ph)=NPh}2] (R = Ph, 5; R = NEt2, 6), accordingly, and the phosphonium salt [Ph3PCH2CO2Me]Cl. Treatment of 5 with 3 equiv of Ph3P=CHCO2Me at 50 degrees C for 5 d resulted in only a 30% conversion to the corresponding Pt(II) complex [Pt{NH=C(NEt2)NC(Ph)=NPh}2] (15). The reduction can be achieved within several minutes, when Ph2PCH2CH2PPh2 in CDCl3 is used. When the platinum(II) complex trans-[PtCl2(RCN)2] is reacted with 2 equiv of the amidine, the imidoylamidinato complexes [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) and [PhC(=NH)NHPh] x HCl (7) are formed. The reaction of trans-[PtCl2(RCN)2] with 4 equiv of the amidine under a prolonged reaction time or treatment of [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) with 2 more equiv of the amidine yields the complex bearing two chelate rings [Pt{NH=C(R)NC(Ph)=NHPh}2] (12-15). The treatment of cis-[PtCl2(RCN)2] (R = Me, Et) with the amidine gives ca. 50-60% yield of [PtCl2{NH=C(R)NHC(Ph)=NHPh}] (16 and 17). All of the platinum compounds were characterized by elemental analyses; FAB mass spectrometry; IR spectroscopy; 1H, 13C{1H}, and 195Pt NMR spectroscopies, and four of them (4, 6, 8, and 15) were also characterized by X-ray crystallography. The coupling of the Pt-bound nitriles and the amidine is metal-mediated insofar as RCN and PhC(=NH)NHPh do not react in the absence of the metal centers in conditions more drastic than those of the observed reactions. The nitrile-amidine coupling reported in this work constitutes a route to the synthesis of imidoylamidine complexes, some of them exhibiting luminescent properties.  相似文献   

20.
The hydroxo complex cis-[L2Pt(mu-OH)]2(NO3)2 (L = PMe2Ph), in various solvents, reacts with 1-methylcytosine (1-MeCy) to give as the final product the cyclic species cis-[L2Pt{1-MeCy(-H),N 3N 4}]3(NO3)3 (1) in high or quantitative yield. X-ray analysis of 1 evidences a trinuclear species with the NH(2)-deprotonated nucleobases bridging symmetrically the metal centers through the N3 and N4 donors. A multinuclear NMR study of the reaction in DMSO-d6 reveals the initial formation of the dinuclear species cis-[L2Pt{1-MeCy(-H),N 3N 4}]2(2+) (2), which quantitatively converts into 1 following a first-order kinetic law (at 50 degrees C, t(1/2) = 5 h). In chlorinated solvents, the deprotonation of the nucleobase affords as the major product (60-70%) the linkage isomer of 1, cis-[L2Pt{1-MeCy(-H)}]3(3+) (3), in which three cytosinate ligands bridge unsymmetrically three cis-L2Pt(2+) units. In solution, 3 slowly converts quantitatively into the thermodynamically more stable isomer 1. No polynuclear adducts were obtained with the hydroxo complex stabilized by PPh3. cis-[(PPh3)2Pt(mu-OH)]2(NO3)2 reacts with 1-MeCy, in DMSO or CH2Cl2, to give the mononuclear species cis-[(PPh3)2Pt{1-MeCy(-H)}(1-MeCy)](NO3) (4) containing one neutral and one NH2-deprotonated 1-MeCy molecule, coordinated to the same metal center at the N3 and N4 sites, respectively. X-ray analysis and NMR studies show an intramolecular H bond between the N4 amino group and the uncoordinated N3 atom of the two nucleobases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号