首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the nanoparticle surface are presented in this paper. In these methods, Fe3O4 nanoparticles were prepared by co-precipitation, and the aging of nanoparticles was improved by applied magnetic field. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). Thereafter, to enhance the compatibility between nanoparticles and water, an effective surface modification method was developed by grafting acrylic acid onto the nanoparticle surface. FT-IR, XRD, transmission electron microscopy (TEM), and thermogravimetry (TG) were used to characterize the resultant sample. The testing results indicated that the polyacrylic acid chains have been covalently bonded to the surface of magnetic Fe3O4 nanoparticles. The effects of initiator dosage, monomer concentration, and reaction temperature on the characteristics of surface-modified Fe3O4 nanoparticles were investigated. Moreover, the Fe3O4-g-PAA hybrid nanoparticles were dispersed in water to form ferrofluids (FFs). The obtained FFs were characterized by UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the high-concentration FF had excellent stability, with high susceptibility and high saturation magnetization. The rheological properties of the FFs were also investigated using a rotating rheometer.  相似文献   

2.
This paper describes a simple way for the coating of magnetite nanoparticles (MNPs) with amorphous silica. First, MNPs were synthesized by controlled co-precipitation technique under N2 gas and then their surface was modified with trisodium citrate in order to achieve particles with improved dispersibility. Afterward, magnetite-silica core/shell nanocomposites were prepared by a sol–gel approach, using magnetic fluid including electrostatically stabilized MNPs as seeds. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, zeta potential analysis and vibrating sample magnetometer (VSM) in order to study their structural and magnetic properties. FT-IR and XRD results imply that resultant nanocomposites are consisted of two compounds; Fe3O4 and SiO2 and TEM images confirm formation of their core/shell structure. TEM images also show increase in silica shell thickness from ∼5 to ∼24 nm with increase in amount of tetraethyl orthosilicate (TEOS) used during the coating process from 0.1 to 0.3 mL. Magnetic studies indicate that Fe3O4 nanoparticles remain superparamagnetic after coating with silica although their Ms values are significantly less than pristine MNPs. These core/shell nanocomposites offer a high potential for different biomedical applications due to having superparamagnetic property of magnetite and unique properties of silica.  相似文献   

3.
The effect of a small amount Fe2O3 (0.1-2 mol%) doping on the electrical properties of (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 (NKLNTS) ceramics was investigated. It was found that the B-site substitution of Fe3+ does not change the crystal structure within the studied doping level and all modified ceramics have a pure tetragonal perovskite structure at room temperature. The addition of Fe2O3 can promote the sintering of NKLNTS ceramics, and simultaneously cause the grain growth so that Fe3+-doped NKLNTS compositions show degraded densification at higher doping level. Furthermore, the dielectric properties of the NKLNTS ceramics do not show a significant change by Fe2O3 doping. However, the addition of Fe2O3 was found to have a significant influence on the electric fatigue resistance and the durability against water. The presence of oxygen vacancies caused by the replacement of Fe3+ for B-site ions makes the NKLNTS ceramics harder.  相似文献   

4.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

5.
We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe3O4 nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe3O4 nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe2+ and Fe3+ and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.  相似文献   

6.
Core-shell-structured LiNi0.5La0.08Fe1.92O4-polyaniline (PANI) nanocomposites with magnetic behavior were synthesized by in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The structure, morphology and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis absorption, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) technique. The results of spectroanalysis indicated that there was interaction between PANI chains and ferrite particles. TEM study showed that LiNi0.5La0.08Fe1.92O4-PANI nanocomposites presented a core-shell structure with a magnetic core of 30-50 nm diameter and an amorphous shell of 10-20 nm thickness. The nanocomposites under applied magnetic field exhibited the hysteresis loops of the ferromagnetic nature. The saturation magnetization and coercivity of nanocomposites decreased with decreasing content of LiNi0.5La0.08Fe1.92O4. The polymerization mechanism and bonding interaction in the nanocomposites have been discussed.  相似文献   

7.
Sono-enhanced degradation of a dye pollutant Rhodamine B (RhB) was investigated by using H2O2 as a green oxidant and Fe3O4 magnetic nanoparticles (MNPs) as a peroxidase mimetic. It was found that Fe3O4 MNPs could catalyze the break of H2O2 to remove RhB in a wide pH range from 3.0 to 9.0 and its peroxidase-like activity was significantly enhanced by the ultrasound irradiation. At pH 5.0 and temperature 55 °C, the ultrasound-assisted H2O2–Fe3O4 catalysis removed about 95% of RhB (0.02 mmol L−1) in 15 min with a apparent rate constant of 0.15 min−1 for the degradation of RhB, being 6.5 and 37.6 folds of that in the simple catalytic H2O2–Fe3O4 system, and the simple ultrasonic US-H2O2 systems, respectively. The beneficial synergistic behavior between Fe3O4 catalysis and ultrasonic was demonstrated to be dependent on Fe3O4 dosage, H2O2 concentration, pH value and temperature. As a tentative explanation, the observed significant synergistic effects was attributed to the positive interaction between cavitation effect accelerating the catalytic breakdown of H2O2 over Fe3O4 nanoparticles, and the function of Fe3O4 MNPs providing more nucleation sites for the cavitation inception.  相似文献   

8.
Fe3O4 nanoparticles were hydrothermally synthesized under continuous microwave irradiation from FeCl3·6H2O and FeSO4·7H2O aqueous solutions, using NH4OH as precipitating reagent and N2H4·H2O as oxidation-resistant reagent. The results of X-ray powder diffraction (XRD), FT–IR spectroscopy and scanning electron microscopy (SEM) measurements showed that the synthesized magnetite (Fe3O4) nanoparticles had an average diameter of 10 nm. The magnetic properties of the Fe3O4 nanoparticles were measured using a vibrating sample magnetometer (VSM), indicating that the nanoparticles possessed high saturation magnetization at room temperature. The Fe3O4 nanoparticles were used to prepare magnetic fluids (MFs) based on water, and the properties of the MFs were characterized by a Gouy magnetic balance, a capillary rheometer and a rotating rheometer, respectively.  相似文献   

9.
Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) with much improved peroxidase-like activity were successfully prepared through an advanced reverse co-precipitation method under the assistance of ultrasound irradiation. The characterizations with XRD, BET and SEM indicated that the ultrasound irradiation in the preparation induced the production of Fe3O4 MNPs possessing smaller particle sizes (16.5 nm), greater BET surface area (82.5 m2 g?1) and much higher dispersibility in water. The particle sizes, BET surface area, chemical composition and then catalytic property of the Fe3O4 MNPs could be tailored by adjusting the initial concentration of ammonia water and the molar ratio of Fe2+/Fe3+ during the preparation process. The H2O2-activating ability of Fe3O4 MNPs was evaluated by using Rhodamine B (RhB) as a model compound of organic pollutants to be degraded. At pH 5.4 and temperature 40 °C, the sonochemically synthesized Fe3O4 MNPs were observed to be able to activate H2O2 and remove ca. 90% of RhB (0.02 mmol L?1) in 60 min with a apparent rate constant of 0.034 min?1 for the RhB degradation, being 12.6 folds of that (0.0027 min?1) over the Fe3O4 MNPs prepared via a conventional reverse co-precipitation method. The mechanisms of the peroxidase-like catalysis with Fe3O4 MNPs were discussed to develop more efficient novel catalysts.  相似文献   

10.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

11.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

12.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

13.
Mössbauer spectroscopic studies of BaFeO4 and K2FeO4 as prepared, then either sealed, or exposed to air, or exposed to moist air for a period up to more than one year, were performed at room temperature as a function of time. Some of the samples were studied as a function of temperature down to 4.2 K. K2FeO4 and BaFeO4 after preparation, exhibit a pure Fe6+ spectrum. K2FeO4 shows low stability. After a period of 14 months in a sealed sample holder, the spectrum exhibits 83% noncrystalline Fe3+, as Fe2O3 nanoparticles, and only 17% of the original Fe6+. BaFeO4 sealed, or exposed to dry air disintegrates slowly, exhibiting a spectrum composed of three subspectra. In addition to the original Fe6+ and final Fe3+ subspectra, a subspectrum, of an intermediate stage of a crystalline Fe4+ system, is present. In the first month the increase of the Fe3+ subspectrum is 15%, and that of the Fe4+ is 8%. BaFeO4 exposed to moist air, disintegrates at a very fast rate. The Fe3+ subspectrum, due to Fe2O3 nanoparticles, increases in the first days at the rapid rate of ∼13%/day, and there is no evidence for Fe4+ in the spectrum. The Fe6+ in BaFeO4, Fe3+ and Fe4+ in the disintegrated systems are all magnetically ordered at 4.2 K. Above 90 K the Fe3+ subspectra exhibit a superposition of a paramagnetic doublet and a diffuse magnetic sextet, with relative intensities changing with temperature, and changing from sample to sample according to their blocking temperatures, which are determined by the distribution in size of the nanoparticles.  相似文献   

14.
 采用溶胶-凝胶工艺和高温高压实验技术,制备了纳米CoFe2O4/SiO2复合材料。利用X射线衍射仪、扫描电子显微镜和振动样品磁强计,对样品的结构、微观形貌和磁性进行了研究,并对CoFe2O4中阳离子的占位情况进行了讨论。结果表明,随着处理压力的升高,样品的晶粒尺寸增大,晶格常数减小,比饱和磁化强度增大。通过计算结果可以推断,压力的升高导致CoFe2O4中的部分Fe3+从A位移向了B位,而部分Co2+则从B位移向了A位。  相似文献   

15.
Polycrystalline La2−xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x=0.1-0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centres in the unit cell leading to increase in critical current density and flux pinning.  相似文献   

16.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

17.
Fe3O4/polystyrene composite particles were prepared from oleic acid (OA) modified Fe3O4 nanoparticles via miniemulsion polymerization. It was concluded that the surface properties of OA modified magnetite nanoparticles have a great effect on preparation of the composite particles. When Fe3O4 nanoparticles coated by multilayer of OA was employed, there were large amounts of free polystyrene particles in the product. Fe3O4/polystyrene composite particles with defined structure and different magnetite content can be readily prepared from monolayer OA modified Fe3O4 nanoparticles. It was concluded that surface of the monolayer OA modified Fe3O4 nanoparticles is more hydrophobic than that of the multilayer coated ones, thus improving the dispersibility of the Fe3O4 nanoparticles in styrene monomer and allowing preparation of the Fe3O4/polystyrene composite particles with defined structure and controllable magnetite content.  相似文献   

18.
Ba(Ti0.3Fe0.7)O3 ceramic was prepared by solid-state reaction and post-annealed in vacuum and oxygen, respectively. The as-prepared and annealed samples are all single-phase, crystallizing in a 6H-BaTiO3-type hexagonal perovskite structure. Room-temperature ferromagnetism is exhibited in all ceramics. For the as-prepared sample, the super-exchange interactions of Fe3+ in different occupational sites (pentahedral and octahedral sites) are expected to produce the ferromagnetism observed. After annealing in vacuum, the magnetization is reduced while the exchange mechanism remains unchanged. On the contrary, O2 annealing can effectively enhance the magnetization due to the presence of Fe4+, an unusual valence for iron. The simultaneous presence of Fe3+ and Fe4+ allows new exchange mechanism responsible for the ferromagnetic interaction. The exchange couplings of Fe ions with mixed valences (Fe3+ and Fe4+) determine the magnetic behavior.  相似文献   

19.
Magnetic Fe3O4 materials with mesoporous structure are synthesized by co-precipitation method using yeast cells as a template. The X-ray diffraction (XRD) pattern indicates that the as-synthesized mesoporous hybrid Fe3O4 is well crystallized. The Barrett-Joyner-Halenda (BJH) models reveal the existence of mesostructure in the dried sample which has a specific surface area of 96.31 m2/g and a pore size distribution of 8-14 nm. Transmission electron microscopy (TEM) measurements confirm the wormhole-like structure of the resulting samples. The composition and chemical bonds of the Fe3O4/cells composites are studied by Fourier transform infrared (FT-IR) spectroscopy. Preliminary magnetic properties of the mesoporous hybrid Fe3O4 are characterized by a vibrating sample magnetometer (VSM). The magnetic Fe3O4/cells composites with mesoporous structure have potential applications in biomedical areas, such as drug delivery.  相似文献   

20.
The polydiethylsiloxane-based ferrofluid was prepared by dispersing finely divided magnetic Fe3O4 particles which are modified with oleoyl sarcosine and lauroyl sarcosine. The optimized experiment parameters including molar ratio of surfactant to Fe3O4 (1:5), temperature (80 °C), stirring rate (300 RPM), the surfactant content of lauroyl sarcosine (0 to 33 mol%) and the modification time (25 min) were obtained by the orthogonal test. The magnetic liquid was characterized by a transmission electron microscope (TEM), infrared (IR) spectrometer, X-ray diffractometer (XRD), thermogravimetry (TG), vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). It is indicated that the surfactant is mainly bonded to the surface of Fe3O4 nanoparticles through covalent bond between carboxylate (COO) and Fe atom. The modified magnetic particles are equally dispersed into the carrier and remain stable below −12 °C over 4 months. The ferrofluids exhibit excellent frost resistance property and distinctly reduced temperature coefficient of viscosity compared with polydimethylsiloxane-based ferrofluids and hydrocarbon-based ferrofluids, respectively. The saturation magnetization could reach up to 27.7 emu/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号