首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
盐酸阿扑吗啡(apomorphinehydrochloride)为吗啡的衍生物,系中枢多巴胺D2受体激动剂,其舌下片制剂是目前用于治疗男性勃起机能障碍的新药。为了研究该制剂中阿扑吗啡的药代动力学特性,我们建立了阿扑吗啡血药浓度测定的液相色谱-串联质谱法。测定了28名健康志愿者口服阿扑吗啡舌下片后阿扑吗啡的血药浓度。已有文献报道采用HPIC-UV、HPLC-荧光、HPLC-电化学和GC等方法测定血浆中阿扑吗啡浓度,在灵敏度方面均低于我们所建立的方法。  相似文献   

2.
Methylmalonic acid (MMA) is a functional biomarker of vitamin B12 deficiency. Measurement of plasma MMA is challenging due to its small molecular weight and hydrophilic nature. Several liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been developed for measuring plasma MMA. However, these methods involve lengthy sample preparation, long chromatographic run time, inadequate sensitivity, or interference from succinic acid (SA). Here we report a novel LC-MS/MS method for quantitation of underivatized MMA in serum or heparinized plasma with high sensitivity and selectivity. Sample preparation involved only strong anion exchange solid phase extraction. The extract was purified by online turbulent flow and analyzed on an Organic Acids column. MS/MS analysis was performed in negative electrospray mode, and the analytical time was 6 min. The use of ion ratio confirmation in combination with chromatographic resolution from SA greatly enhanced the selectivity. No interference was observed. This method was linear from 26.2 to 26,010.0 nM with an accuracy of 98-111 %. Total coefficient of variation was less than 4.6 % for three concentration levels tested. Comparison with a reference laboratory LC-MS/MS method using leftover patient serum specimens (n = 48) showed a mean bias of -2.3 nM (-0.61 %) with a Deming regression slope of 1.016, intercept of -6.6 nM, standard error of estimate of 25.3 nM, and a correlation coefficient of 0.9945. In conclusion, this LC-MS/MS method offers highly sensitive and selective quantitation of MMA in serum and plasma with simple sample preparation.  相似文献   

3.
A sensitive analytical method was developed to determine tetrodotoxin(TTX) in human plasma samples using protein precipitation, followed by ultra performance liquid chromatography(UPLC) analysis coupled with tandem mass spectrometry(MS/MS) using 11-deoxytetrodotoxin(11-deoxyTTX) as an internal standard. The plasma samples were prepared using protein precipitation prior to being analyzed by UPLC-MS/MS to identify TTX over a zwitterionic-hydrophilic interaction liquid chromatography column. The retention time values of TTX and 11-deoxyTTX were 4.12 and 3.67 min, respectively. TTX and 11-deoxyTTX were monitored and quantitated on the basis of their ion transitions for their respective precursor ions to their product ions(i.e., m/z 320.0→162.1 for TTX and m/z 304.0→176.0 for 11-deoxyTTX) in the multiple reaction-monitoring mode. The lower limit of quantification of this method was determined to be 0.0199 ng/mL. This method showed good linearity for plasma samples that contained TTX concentrations in the range of 0.0199-1.99 ng/mL. The specificity, precision, accuracy, matrix effect, and stability characteristics of this method were also examined. The intra-assay precision and accuracy ranged from 1.89% to 6.00% and from 92.21% to 100.00%, whereas the inter-assay precision and accuracy ranged from 0.64% to 7.75% and from 99.38% to 101.26%, respectively. This new method therefore represents a rapid, accurate, reliable, and highly sensitive method for the qualitative and quantitative analyses of a trace amount of TTX in human plasma samples.  相似文献   

4.
A liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay was developed and validated to determine valproic acid in human plasma. The method involved a solid-phase extraction of valproic acid and betamethasone valerate, an internal standard, from plasma and detection using an LC-MS/MS system with electrospray ionization source in negative ion mode. Separation was achieved within 3 min on a non-porous silica column with mobile phase containing ammonium acetate and methanol. Multiple reaction monitoring was utilized for detection monitoring at 142.89-142.89 for valproic acid and 457.21-457.21 for the internal standard. The calibration curve for valproic acid was linear over the range of 0.5-150 microg/mL. The limit of detection was 0.17 microg/mL and the lower limit of quantification was 0.5 microg/mL, when 0.2 mL plasma was used for extraction. The percentage coefficient of validation for accuracy and precision (inter- and intra-day) for this method was less than 9.5% with recovery ranging from 82.3 to 86.9% for valproic acid.  相似文献   

5.
A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.  相似文献   

6.
A liquid chromatography/tandem mass spectrometric (LC/MS/MS) assay was developed for the quantitative determination of 2-methoxyestradiol (2ME2) in human plasma. Sample pretreatment involved liquid-liquid extraction with ethyl acetate of 0.3-mL aliquots of plasma spiked with the internal standard, deuterated 2ME2 (2ME2-d5). Separation was achieved on a Zorbax Eclipse C18 column (2.1 x 50 mm, i.d., 5 microm) at room temperature using a gradient elution with methanol and water at a flow rate of 0.25 mL/min. Detection was performed using atmospheric pressure chemical ionization MS/MS by monitoring the ion transitions from m/z 303.1 --> 136.8 (2ME2) and m/z 308.1 --> 138.8 (2ME2-d5). Calibration curves were linear in the concentration range of 1-100 ng/mL. The accuracy and precision values, obtained from three different sets of quality control samples analyzed in quintuplicate on four separate occasions, ranged from 105-108% and from 3.62-5.68%, respectively. This assay was subsequently used for the determination of 2ME2 concentration in plasma of a patient with cancer after a single oral administration of 2ME2 at a dose of 2200 mg.  相似文献   

7.
A simple plasma extraction method coupled with liquid chromatography–tandem mass spectrometry (LC/MS/MS) detection was developed and validated for the analysis of endogenous mevalonic acid (MVA), a biomarker indicative of the rate of cholesterol biosynthesis, in human plasma samples. The analyte was extracted from the plasma matrix using a straightforward liquid–liquid sample preparation procedure. The extract supernatants were evaporated, reconstituted in aqueous solvent and injected into the LC/MS/MS system without further processing. The chromatographic separation was achieved on a reverse‐phase high‐performance liquid chromatography column. The accuracy and precision of the method was determined over the concentration range 0.25–25 ng/mL MVA from human plasma extracts in three validation batch runs. Inter‐assay precision (%CV) and accuracy (%RE) of the quality control samples were ≤7.00% (at lower limit quality control) and ≤6.10%, respectively. The sensitivity and throughput of this assay was significantly improved relative to previously published methods, resulting in smaller sample requirements and shorter analysis time. Assay results from a clinical study following the oral administration of an exploratory statin demonstrate that this procedure could potentially be used in the investigation of therapies associated with hypercholesterolemia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A method was developed and fully validated for the quantitation of prazepam and its major metabolites, oxazepam and nordiazepam, in human plasma. Sample pretreatment was achieved by solid-phase extraction using Oasis HLB cartridges. The extracts were analysed by high-performance liquid chromatography (HPLC) coupled with single-quadrupole mass spectrometry (MS) with an electrospray ionization interface. The MS system was operated in the selected ion monitoring mode. HPLC was performed isocratically on a reversed-phase XTerra MS C18 analytical column (150 x 3.0 mm i.d., particle size 5 microm). Diazepam was used as the internal standard for quantitation. The assay was linear over a concentration range of 5.0-1000 ng ml(-1) for all compounds analyzed. The limit of quantitation was 5 ng ml(-1) for all compounds. Quality control samples (5, 10, 300 and 1000 ng ml(-1)) in five replicates from three different runs of analysis demonstrated an intra-assay precision (CV) of < or = 9.1%, an inter-assay precision of < or = 6.0% and an overall accuracy (relative error) of < 4.6%. The method can be used to quantify prazepam and its metabolites in human plasma covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

9.
A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (MS/MS) method was developed and validated for the quantitation of the novel CDK5 inhibitor ‘20–223' in mouse plasma. Separation of analytes was achieved by a reverse-phase ACE Excel C18 column (1.7 μm, 100 × 2.1 mm) with gradient elution using 0.1% formic acid (FA) in methanol and 0.1% FA as the mobile phase. Analytes were monitored by MS/MS with an electrospray ionization source in the positive multiple reaction monitoring mode. The MS/MS response was linear over the concentration range 0.2–500 ng/mL for 20–223. The within- and between-batch precision were within the acceptable limits as per Food and Drug Administration guidelines. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. Compound 20–223 was highly bound to mouse plasma proteins (>98% bound). Utilizing mouse S9 fractions, in vitro intrinsic clearance (CLint) was 24.68 ± 0.99 μL/min/mg protein. A total of 12 phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. The validate method required a low sample volume, was linear from 0.2 to 500 ng/mL, and had acceptable accuracy and precision.  相似文献   

10.
An on-line liquid chromatography/tandem mass spectrometry (LC-MS/MS) procedure, using the Prospekt- 2 system, was developed and used for the determination of the levels of the active ingredients of cough/cold medications in human plasma matrix. The experimental configuration allows direct plasma injection by performing on- line solid phase extraction (SPE) on small cartridge columns prior to elution of the analyte(s) onto the analytical column and subsequent MS/MS detection. The quantitative analysis of three analytes with differing polarities, dextromethorphan (DEX), dextrorphan (DET) and guaifenesin (GG) in human plasma presented a significant challenge. Using stable-isotope-labeled internal standards for each analyte, the Prospekt-2 on-line methodology was evaluated for sensitivity, suppression, accuracy, precision, linearity, analyst time, analysis time, cost, carryover and ease of use. The lower limit of quantitation for the on-line SPE procedure for DEX, DET and GG was 0.05, 0.05 and 5.0 ng mL(-1), respectively, using a 0.1 mL sample volume. The linear range for DEX and DET was 0.05-50 ng mL(-1) and was 5-5,000 ng mL(-1) for GG. Accuracy and precision data for five different levels of QC samples were collected over three separate days. Accuracy ranged from 90% to 112% for all three analytes, while the precision, as measured by the %RSD, ranged from 1.5% to 16.0%  相似文献   

11.
A rapid, selective and sensitive method has been developed for the determination of chlortetracycline in swine plasma by LC-ESI/MS/MS. The method consists of a protein precipitation extraction for sample preparation and liquid chromatography ionspray tandem mass spectrometry for analysis. The plasma samples were extracted with acetonitrile and the supernatants were analyzed using an LC-ESI/MS/MS instrument. Separation was achieved using a C(8) analytical column and an isocratic mobile phase composed of 70:30 acetonitrile:0.5% formic acid in water at a flow rate of 500 microL/min. A linear (weighted 1/concentration) relationship was used to perform the calibration over an analytical range 20--2000 ppb (ng/mL). The intra-batch precision and accuracy at LLOQ, medium and high concentrations were 9.0, 11.3 and 9.9% and 97.7, 100.3 and 98.4%, respectively, and the inter-batch precision and accuracy at LLOQ, medium and high concentrations were 9.1, 8.4 and 7.4% and 95.1, 102.1 and 97.1%, respectively. This LC-ESI/MS/MS method for the determination of chlortetracycline in swine plasma has been proven to be within generally accepted criteria used for bioanalytical assay.  相似文献   

12.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated to determine the concentrations of adefovir [9-(2-phosphonylmethoxyethyl)adenine, PMEA] in human plasma. After one-step protein precipitation of plasma samples by methanol, adefovir was analyzed by LC/MS/MS using positive electrospray ionization. Chromatography was performed on a C18 column. The extraction recoveries of adefovir were found to be 85.1-89.3%. Adefovir was stable under routine laboratory conditions. A minimal matrix effect resulting in a slight ionization enhancement of adefovir (<10.9%) was observed, which did not markedly affect the behavior of the calibrations curves and accuracy and precision data. The method had a chromatographic run time of 7.8 min and a linear calibration curve over the concentration range 1.5-90 ng/mL for adefovir. The lower limit of quantification of the method was 1.5 ng/mL. The intra- and inter-day precision was less than 8.4%. These results indicated that this LC/MS/MS method has high selectivity and efficiency, and acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method has been successfully used in a pharmacokinetic study in healthy volunteers treated with oral adefovir dipivoxil at 10 and 20 mg.  相似文献   

13.
A simple and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) method was developed and validated for determination of two highly lipophilic anticancer drug candidates, LG1980 and GH501, in rat plasma and tissues (liver, kidney and femur bones). LG1980 and GH501 were extracted from rat plasma and tissue homogenates using liquid–liquid extraction. The method provided a linear range of 1.0–200.0 ng/mL for GH501 in plasma and LG1980 in plasma and liver. For both analytes in other tissue homogenates the linear range was 2.0–400.0 ng/mL. The method was validated with precision within 15% relative standard deviation, accuracy within 15% relative error and a consistent recovery. This method has been successfully applied in two preclinical studies for LG1980 and GH501 to determine their concentrations in rat plasma, liver, kidney and bone over 24 h after intravenous injection of compounds.  相似文献   

14.
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.  相似文献   

15.
Docetaxel is an antineoplastic agent widely used in therapeutics. The objective of this study was to develop and validate a routine assay, using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS), for the simultaneous quantification of docetaxel and its main hydroxylated metabolites in human plasma. A structural analogue, paclitaxel, was used as the internal standard. Determination of docetaxel and four metabolites (M1, M2, M3 and M4) was achieved using only 100 microL of plasma. Liquid-liquid extraction was used for sample preparation, with extraction efficiency of at least 90% for all analytes. Detection used positive-mode electrospray ionization in selected reaction monitoring mode. The lower limit of quantification (LLOQ) was 0.5 ng/mL for all analytes. The assay was linear in the calibration curve range 0.5-1000 ng/mL and acceptable precision and accuracy (<15%) were obtained with concentrations above the LLOQ. This method was sufficiently selective and sensitive for quantification of metabolites in plasma from cancer patients receiving docetaxel chemotherapy, and is suitable for routine analyses during pharmacokinetic studies.  相似文献   

16.
The development of a simple HILIC-LC-MS/MS method to quantify the plasma levels of allantoin, inosine, hypoxanthine, and adenosine, using stripped plasma for the bioanalytical method validation, was the purpose of this study. Chromatographic separation conducted using an XBridge BEH Amide column (2.1 × 150 mm, 3.5 μm) was achieved under gradient elution with two mobile phases: 0.1% formic acid–ACN (5:95) and 0.1% formic acid–ACN (50:50). Multiple reaction monitoring MS detection was performed using a triple quadrupole. The method validation experiments were performed according to the European Medicines Agency and the U.S. Food and Drug Administration guidelines. The lower LOQ was 50 nM, 5 nM, 20 nM, and 2 nM for allantoin, inosine, hypoxanthine, and adenosine, respectively. The recovery was repeatable and stable. The intraday precision ranged from 1.6% to 6.5%, while the interday precision ranged from 3.4% to 58.7%. Therefore, it is necessary to make a matrix-matched calibration curve each day to overcome this issue. Since the quality control samples’ stability did not always comply with the guidelines, the samples need to be analyzed soon after collection.  相似文献   

17.
A sensitive and selective method was developed to quantitate allopregnanolone and its 5β isomer pregnanolone in human plasma using liquid chromatography-differential mobility separation combined with MS/MS detection. The method employed a simple liquid–liquid extraction of 100 μL plasma with hexane/ethyl acetate. After extraction, the sample was derivatized using a quaternary aminooxy reagent. Separation of allopregnanolone, pregnanolone, and their 3β epimers (epiallopregnanolone and epipregnanolone) was achieved using a Phenomenex Kinetex C18 2.1?×?100-mm 2.6-μm column. A linear calibration curve was obtained over the concentration range from 10 to 25,000 pg/mL, and the inter- and intra-day accuracy of the quality control samples were between 90 and 110 % with the inter- and intra-day precision less than 10 %. The lower limit of quantitation is 50 fg (157 amol) on column for both allopregnanolone and pregnanolone which is 100-fold less than the underivatized compounds. The recovery is above 95 %, and the extracted samples are stable for at least 6 days when stored at 4 °C. Plasma samples from normal, pregnant, and postpartum women were analyzed using this method.  相似文献   

18.
A new method was developed and fully validated for the quantitation of benazepril, benazeprilat and hydrochlorothiazide in human plasma. Sample pretreatment was achieved by solid-phase extraction (SPE) using Oasis HLB cartridges. The extracts were analysed by high-performance liquid chromatography (HPLC) coupled to a single-quadrupole mass spectrometer (MS) with an electrospray ionization interface. The MS system was operated in selected ion monitoring (SIM) modes. HPLC was performed isocratically on a reversed-phase porous graphitized carbon (PGC) analytical column (2.1 x 125.0 mm i.d., particle size 5 microm). The mobile phase consisted of 55% acetonitrile in water containing 0.3% v/v formic acid and pumped at a flow rate of 0.15 ml min(-1). Chlorthalidone was used as the internal standard (IS) for quantitation. The assay was linear over a concentration range of 5.0-500 ng ml(-1) for all the compounds analysed, with a limit of quantitation of 5 ng ml(-1) for all the compounds. Quality control (QC) samples (5, 10, 100 and 500 ng ml(-1)) in five replicates from three different runs of analyses demonstrated intra-assay precision (coefficient of variation (CV) < or =14.6%), inter-assay precision (CV < or = 5.6%) and overall accuracy (relative error less than -8.0%). The method can be used to quantify benazepril, benazeprilat and hydrochlorothiazide in human plasma, covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

19.
Anandamide (AEA) is an endocannabinoid present in human plasma that is associated with several physiological functions and disease states. However, low AEA plasma levels pose challenges in terms of analytical characterization. Classical liquid‐based lipid extraction and solid‐phase extraction require complicated procedures and the drying down of relatively large volumes of solvents, making them unsuitable for high‐throughput analysis. Here a high‐throughput salting‐out assisted liquid–liquid extraction (SALLE) method with acetonitrile and mass spectrometry compatible salts for liquid chromatography–tandem mass spectrometry (LC‐MS/MS) analysis of AEA in human plasma has been developed and validated. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step, only 100 μL of plasma is required and minimal volumes of organic solvent are used. Good reproducibility, accuracy and precision were demonstrated during the method validation. The method is linear up to 10 ng/mL with a lower limit of quantitation of 0.1 ng/mL for AEA, the accuracy for AEA was from 93.3 to 96.7% and the precision was <8.57%. This new methodology was successfully applied to analysis of clinical samples from maintenance hemodialysis patients. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A novel, sensitive and specific method for the quantitative determination of diclazuril in animal plasma using liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with negative ion detection is presented. Extraction of the samples was performed with a rapid deproteinization step using acetonitrile. Chromatography of diclazuril and the internal standard was achieved on a Nucleosil ODS 5-microm column, using a gradient elution with 0.01 M ammonium acetate and acetonitrile. To obtain the highest sensitivity and specificity possible, the mass spectrometer was operated in the multiple reaction monitoring (MRM) mode. The method was validated according to the requirements defined by the European Community. Calibration curves using plasma fortified between 1-100 ng/mL and 100-2000 ng/mL showed good linear correlation (r >or= 0.9991, goodness-of-fit coefficient 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号