首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
A facile route for the synthesis of dimethyl adipate (DAP) from cyclopentanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed.It was found that the intermediate carbomethoxycyclopentanone (CMCP) was produced from cyclopentanone with DMC in the first step,and then CMCP was further converted to DAP by reacting with a methoxide group.The role of the basic catalysts can be mainly ascribed to the activation of cyclopentanone via the abstraction of a proton in the α-position by base sites,and solid bases with moderate strength,such as MgO,favor the formation of DAP.  相似文献   

2.
A facile synthesis of N-methyl-N-aryl carbamates from aromatic amines and dimethyl carbonate (DMC) has been achieved with high yields in the presence of potassium carbonate (K2CO3) and tetrabutylammonium bromide (Bu4NBr) under solvent-free conditions.  相似文献   

3.
Critical temperatures and pressures of nominal reacting mixture in synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide (quaternary mixture of carbon dioxide + methanol + water + DMC) were measured using a high-pressure view cell. The results suggested that the critical properties of the reacting mixture depended on the reaction extent as well as its initial composition (initial ratio of carbon dioxide to methanol). Such information is essential for determining the reaction conditions when one intends to carry out the synthesis of DMC with CO2 and methanol under supercritical conditions.  相似文献   

4.
Promotion of ionic liquid, 1-ethyl-3-methylimidazolium bromide (emimBr), to the synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the presence of potassium carbonate and less amount of methyl iodide under mild conditions was investigated. The results showed that the high selectivity and raised yield of DMC was achieved due to the addition of emimBr in the reaction system. And effect of several reaction conditions such as temperature, pressure and amount of emimBr was discussed.  相似文献   

5.
The effect of potassium(K) promoter on the catalytic performance of activated carbon(AC) supported Wacker-type catalysts(Pd Cl2–Cu Cl2/AC) for the synthesis of dimethyl carbonate(DMC) from CO and methyl nitrite(MN) was investigated by means of N2 adsorption, H2-temperature-programmed reduction(H2-TPR), and X-ray photoelectron spectroscopy(XPS). The experimental results showed that the space time yield of DMC on Wacker-type catalysts with different K promoters ranked in the following order: KCl KOH CH3 COOK K2CO3. Especially, the addition of KCl significantly improved the catalytic activities of Pd Cl2–Cu Cl2/AC catalyst for DMC synthesis from CO and MN. N2 adsorption data indicated that the addition of K promoters did not change the textural properties of Wacker-type catalysts greatly. H2-TPR and XPS results demonstrated that the existence of KCl promoted the reducibility of Cu2+species and increased the proportion of Cu2+species on catalyst surface, which is favorable for oxidizing Pd0 to active Pd2+. Further, the addition of KCl benefited the reactivity of Pd Cl2–Cu Cl2/AC catalyst for DMC synthesis from CO and MN.  相似文献   

6.
A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of various reaction variables like reaction time, temperature and pressure on the catalytic performance were also investigated. 54% DMC yield and 71% PC conversion were obtained under the optimal reaction conditions. Notably, the catalyst was able to be reused with retention of high catalytic activity and selectivity. Consequently, the process presented here has great potential for industrial application due to its advantages such as stability, easy preparation from renewable biopolymer, and simple separation from products.  相似文献   

7.
Direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide over Co1.5PW12O40 in liquid and in gas phase is investigated. The synthesized catalyst has been characterized by means of FTIR and XRD. Liquid phase experiment results showed that high pressures are favorable for the synthesis of DMC. However, DMC formation is limited by the reaction with co-produced water. DMC selectivity is more strongly dependent on the temperature than on the pressure of CO2. As for the reactions in gas phase, it has been found that both CH3OH conversion and DMC selectivity decreased with increasing temperature, owing to the decomposition of DMC at high temperatures. High temperatures and more amount of Co1.5PW12O40 catalyst favor the formation of dimethoxymethane (DMM) and methyl formate (MF).  相似文献   

8.
《天然气化学杂志》2012,(4):476-479
Promoted catalytic reaction between methanol and CO2 for dimethyl carbonate(DMC) synthesis is conducted over K2CO3/CH3 I catalyst in the presence of ionic liquid under microwave irradiation.The effect of ionic liquids incorporated with microwave irradiation on the yield of DMC is investigated.DMC was found to form at lower temperature in a relative short time,which indicated an enhanced catalytic process by ionic liquid.Among the ionic liquids used,1-butyl-3-methylimidazolium chloride is the most effective promoter.Density functional theory calculations indicate that CO2 bond lengths and angles changed due to the molecular interaction of ionic liquid and CO2,resulting in the activation of CO2 molecules and consequently the acceleration of reaction rate.  相似文献   

9.
The mechanism of dimethyl carbonate(DMC) formation from CO_2 and methanol is investigated using three well-shaped CeO_2 catalysts, nanorod, nanocube and octahedron, which are packed with different crystal planes. In situ Fourier Transform Infrared Spectroscopy(FTIR) is employed to probe each reaction step in the DMC synthesis. The number of –OH groups and the species of CO_2 adsorptions on ceria surface have significant influence on the activity of ceria with different morphologies. Rod-ceria has favorable catalytic activity because of the large amount of –OH groups and the formation of bidentate carbonate species.  相似文献   

10.
钛酸酯催化碳酸二甲酯与苯酚酯交换反应   总被引:15,自引:0,他引:15  
高俊杰  姚洁  梅花  王公应 《催化学报》2001,22(4):405-407
The transesterification of phenol and dimethyl carbonate (DMC) to diphenyl carbonate (DPC) was studied using tetrabutyl titanate and tetraphenyl titanate as catalysts. The main product was found to be methyl phenyl carbonate (MPC) which is an intermediate of the reaction. The selectivity for DPC was improved when increasing the phenol/DMC molar ratio or prolonging the reaction time. The phenol conversion, selectivity for MPC and DPC were 47 4%, 90 9% and 9 14%, respectively, when the transesterification reaction approached equilibrium under the conditions of 175 ℃, 25 h and DMC∶phenol∶ Ti(OBu) 4 molar ratio of 1 5∶1∶0 05. The selectivity for DPC could reach 12.2% when the reaction time was 30 h. The tetrabutyl titanate catalyst showed a higher catalytic activity than tetraphenyl titanate.  相似文献   

11.
采用表面改性法和等体积浸渍法制备了NiO-V2O5/SiO2和Cu/NiO-V2O5/SiO2光催化剂. 用TPR, XRD, UV-Vis DRS, IR和TPD-MS技术对催化剂的结构、吸光性能和化学吸附性能进行了表征, 研究了催化剂上CO2和甲醇光促表面催化反应的反应性能. 结果表明, 半导体NiO和V2O5复合后部分形成了Ni2+—O—V5+键联, 而且NiO和V2O5在催化剂表面有相互修饰作用, NiO的加入有助于提高V2O5在载体SiO2表面的分散程度, 抑制V2O5的聚集, 而且金属Cu和NiO的引入扩展了催化剂的光响应范围. 在催化剂表面存在多种活性吸附位, 催化剂对CO2和甲醇的有效吸附使得其在较低温度下就能促进碳酸二甲酯的紫外光化学合成. 用Cu/NiO-V2O5/SiO2催化剂, 在常压、空速300 h-1、140 ℃和125 W紫外灯辐照的情况下, CH3OH的转化率为14.2%, 碳酸二甲酯的选择性可达89.9 %.  相似文献   

12.
Environmentally friendly oxidations of various organic compounds with the hydrogen peroxide (H2O2)/methyltrioxorhenium (CH3ReO3, MTO) catalytic system have been described in dimethyl carbonate (DMC), a cheap commercially available and benign chemical having interesting solvating properties, low toxicity and high biodegradability. Oxidations proceeded with good conversions and in good yields. Spectrophotometric analysis demonstrated that the [CH3ReO(O-O)2] complex was formed in DMC and that it was stable for several days at room temperature.  相似文献   

13.
固体碱在二氧化碳-甲醇法合成碳酸二甲酯反应中的作用   总被引:10,自引:0,他引:10  
本文探讨了固体碱的制备和预处理等因素对于CO2-甲醇法合成碳酸二甲酯(DMC)的影响,发现微波法所制碱性沸石等多孔材料的反应活性高于浸渍法所制样品。本文首次报道了微波辐射低压合成DMC的新方法,该法能极大地缩短反应时间并提高产物选择性。研究表明:CO2和甲醇生成DMC的反应在热力学上是几乎不能进行的,加入固体碱的实质是提供了一条耦合的途径。  相似文献   

14.
The vapor-phase catalytic alkylation of phenol with dimethyl carbonate over different AlPO4 (Al/P=1), Al2O3 and AlPO4-Al2O3 (5–25 wt.% Al2O3) catalysts produces anisole (O-alkylation) as the major reaction product althougho-cresol (C-alkylation) and methylanisoles were also found. The reaction is first order in phenol while O-and C-alkylation follow parallel processes. As compared with methanol, DMC is far more effective as a methylating agent, and the methylation proceeds at a lower temperature and with higher O-alkylation selectivity.  相似文献   

15.
Dibutyltin oxide (Bu2SnO)n (3) reacts with methanol to give the tetrabutyl(dimethoxy)stannoxane dimer (4). The presence of 2,2-dimethoxypropane under a CO2 pressure accelerates the reaction resulting in nearly quantitative yield. Complex 4 exhibits catalytic activity as high as that of {Bu2Sn(OMe)2}2 (1) in the dimethyl carbonate (DMC) synthesis from CO2 and methanol. These results indicate that the conversion of 3 to 4 occurs under catalytic DMC production conditions.  相似文献   

16.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性, 研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界面特征. 实验结果表明, LiODFB不仅具有更高的热稳定性, 而且在EC+DMC溶剂中具有较好的电化学性能. 与使用LiPF6/EC+DMC的电解液相比, 锂离子电池应用LiODFB基电解液在55 ℃的高温具有更好的容量保持能力; 以0.5C、1C(1C=250 mA·g-1)倍率循环放电, 两种电池间的倍率性能差别较小; LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜); 交流阻抗表明, 使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗. 因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

17.
A novel flower-like hydrated magnesium carbonate hydroxide,Mg_5(CO_3)_4(OH)_2·4H_2O,with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant.Reaction time has an important effect on the final morphology of the product.The micro-structure and morphology of Mg_5(CO_3)_4(OH)_2·4H_2O were characterized by means of X-ray diffractometry(XRD),field-emission scanning electron microscopy(FE-SEM).Brunauer-Emmett-Teller(BET)surface areas of the samples were also measured.The probable formation mechanism of flower-like micro-structure was discussed.It was found that Mg_5(CO_3)_4(OH)_2·4H_2O with flower-like micro-structure was a novel and efficient catalyst for the synthesis of diphenyl carbonate(DPC)by transesterification of dimethyl carbonate(DMC)with phenol.  相似文献   

18.
Summary A two-step synthesis of dimethyl carbonate (DMC) from ethylene oxide (EO), carbon dioxide and methanol using heterogeneous anion exchange resins as catalysts is reported. The first step is the reaction of EO with CO2 to form ethylene carbonate (EC), and the second one the transesterification of EC with methanol to yield DMC. Effect of various reaction parameters on the activity and selectivity of the catalysts used was investigated. After the first step, the crude mixture containing EC was directly reacted with methanol in the presence of a heterogeneous anion exchange resin catalyst to produce DMC in high yield and selectivity. Our process is highly economic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号