首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The ultraviolet photolysis of CH(2)I(2) was studied in water and salt water solutions using photochemistry and picosecond time-resolved resonance Raman spectroscopy. Photolysis in both types of environments produces mainly CH(2)(OH)(2) and HI products. However, photolysis of CH(2)I(2) in salt water leads to the formation of different products/intermediates (CH(2)ICl and Cl(2) (-)) not observed in the absence of salt in aqueous solutions. The amount of CH(2)(OH)(2) and HI products appears to decrease after photolysis of CH(2)I(2) in salt water compared to pure water. We briefly discuss possible implications of these results for photolysis of CH(2)I(2) and other polyhalomethanes in sea water and other salt aqueous environments compared to nonsalt water solvated environments.  相似文献   

2.
A combined experimental and theoretical study of the ultraviolet photolysis of CH2I2 in water is reported. Ultraviolet photolysis of low concentrations of CH2I2 in water was experimentally observed to lead to almost complete conversion into CH2(OH)2 and 2HI products. Picosecond time-resolved resonance Raman spectroscopy experiments in mixed water/acetonitrile solvents (25%-75% water) showed that appreciable amounts of isodiiodomethane (CH2I-I) were formed within several picoseconds and the decay of the CH2I-I species became substantially shorter with increasing water concentration, suggesting that CH2I-I may be reacting with water. Ab initio calculations demonstrate the CH2I-I species is able to react readily with water via a water-catalyzed O--H-insertion and HI-elimination reaction followed by its CH2I(OH) product undergoing a further water-catalyzed HI-elimination reaction to make a H2C=O product. These HI-elimination reactions produce the two HI leaving groups observed experimentally and the H2C=O product further reacts with water to produce the other final CH2(OH)2 product observed in the photochemistry experiments. These results suggest that CH2I-I is the species that reacts with water to produce the CH2(OH)2 and 2HI products seen in the photochemistry experiments. The present study demonstrates that ultraviolet photolysis of CH2I2 at low concentration leads to efficient dehalogenation and release of multiple strong acid (HI) leaving groups. Some possible ramifications for the decomposition of polyhalomethanes and halomethanols in aqueous environments as well as the photochemistry of polyhalomethanes in the natural environment are briefly discussed.  相似文献   

3.
Time-resolved resonance Raman (TR3) studies of the photochemistry of phenyl azide, 3-hyroxyphenyl azide, 3-methoxyphenyl azide and 3-nitrophenyl azide in acetonitrile:water solutions is reported. After photolysis of these four aryl azides in room temperature solutions, only one species was observed in the TR3 spectra for each azide, respectively at the probe wavelengths employed in the TR3 experiments. The species observed after photolysis of 3-nitrophenyl azide was assigned to 3,3'-dinitroazobenzene, an azo compound formed from the dimerization reaction of triplet 3-nitrophenylnitrene. In contrast, the species observed after photolysis of phenyl azide, 3-hydroxyphenyl azide and 3-methoxyphenyl azide were tentatively assigned to intermediates formed from the dimerization of didehydroazepines that are produced from the ring expansion reaction of the respective singlet arylnitrene. To our knowledge, this is the first time-resolved vibrational spectroscopic observation of the dimerization reaction of didehydroazepines in solution. In addition, these are the first resonance Raman spectra reported for dimers formed from didehydroazepines. We briefly discuss the structures, properties and chemical reactivity of the dimer species observed in the TR3 spectra and possible implications for the photochemistry of aryl azides.  相似文献   

4.
The ultraviolet photolysis of low concentrations of CH(2)XI (X = Cl, Br, I) were investigated in water and saltwater solutions by photochemistry and picosecond time-resolved resonance Raman spectroscopy. Photolysis in both kinds of solutions formed mostly CH(2)(OH)(2) and HI and HX products. However, photolysis of the CH(2)XI molecules in saltwater resulted in production of some CH(2)XCl products not observed in aqueous solutions without salt present. The appearance of these new products in saltwater solutions is accompanied by a decrease in the amount of CH(2)(OH)(2), HI, and HX products compared to photolysis in aqueous solutions without salt present. The possible implications for photolysis of CH(2)XI and other polyhalomethanes in seawater and other salt aqueous environments compared to nonsaltwater solvated environments is briefly discussed.  相似文献   

5.
A combined experimental and theoretical investigation of the ultraviolet photolysis of CH2XI (where X = Cl, Br, I) dihalomethanes in water is presented. Ultraviolet photolysis of low concentrations of CH2XI (where X = Cl, Br, I) in water appears to lead to almost complete conversion into CH2(OH)2 and HX and HI products. Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy experiments revealed that noticeable amounts of CH2X-I isodihalomethane intermediates were formed within several picoseconds after photolysis of the CH2XI parent compound in mixed aqueous solutions. The ps-TR3 experiments in mixed aqueous solutions revealed that the decay of the CH2X-I isodihalomethane intermediates become significantly shorter as the water concentration increases, indicating that the CH2X-I intermediates may be reacting with water. Ab initio calculations found that the CH2X-I intermediates are able to react relatively easily with water via a water-catalyzed O-H insertion/HI elimination reaction to produce CH2X(OH) and HI products, with the barrier for these reactions increasing as X changes from Cl to Br to I. The ab initio calculations also found that the CH2X(OH) product can undergo a water-catalyzed HX elimination reaction to make H2C=O and HX products, with the barrier to reaction decreasing as X changes from Cl to Br to I. The preceding two water-catalyzed reactions produce the HI and HX leaving groups observed experimentally, and the H2C=O product further reacts with water to make the other CH2(OH)2 product observed in the photochemistry experiments. This suggests that that the CH2X-I intermediates react with water to form the CH2(OH)2 and HI and HX products observed in the photochemistry experiments. Ultraviolet photolysis of CH2XI (where X = Cl, Br, I) at low concentrations in water-solvated environments appears to lead to efficient dehalogenation and release of two strong acid leaving groups. We very briefly discuss the potential influence of this photochemistry in water on the decomposition of polyhalomethanes and halomethanols in aqueous environments.  相似文献   

6.
Ultraviolet photolysis of low concentrations of CH2I2 in methanol solution found that CH2I2 is converted into dimethoxymethane and some H+ and I- products. Picosecond time-resolved resonance Raman (ps-TR3) experiments observed that the isodiiodomethane (CH2I-I) photoproduct decayed faster as the concentration of methanol increases, suggesting that isodiiodomethane is reacting with methanol. Ab initio calculations indicate isodiiodomethane is able to react with methanol via an O-H insertion/HI elimination to form an iodoether (ICH2-O-CH3) and HI products. The iodoether can then further react via another O-H insertion/HI elimination reaction to form the dimethoxymethane (CH3-O-CH2-O-CH3) observed in the photochemistry experiments. A reaction mechanism consistent with these experimental and theoretical observations is proposed.  相似文献   

7.
We investigate the structural dynamics of iodine elimination reaction of 1,2-diiodoethane (C(2)H(4)I(2)) in cyclohexane by applying time-resolved X-ray liquidography (TRXL). The TRXL technique combines structural sensitivity of X-ray diffraction and 100 ps time resolution of X-ray pulses from synchrotron and allows direct probing of transient structure of reacting molecules. From the analysis of time-dependent X-ray solution scattering patterns using global fitting based on DFT calculation and MD simulation, we elucidate the kinetics and structure of transient intermediates resulting from photodissociation of C(2)H(4)I(2). In particular, the effect of solvent on the reaction kinetics and pathways is examined by comparison with an earlier TRXL study on the same reaction in methanol. In cyclohexane, the C(2)H(4)I radical intermediate undergoes two branched reaction pathways, formation of C(2)H(4)I-I isomer and direct dissociation into C(2)H(4) and I, while only isomer formation occurs in methanol. Also, the C(2)H(4)I-I isomer has a shorter lifetime in cyclohexane by an order of magnitude than in methanol. The difference in the reaction dynamics in the two solvents is accounted for by the difference in solvent polarity. In addition, we determine that the C(2)H(4)I radical has a bridged structure, not a classical structure, in cyclohexane.  相似文献   

8.
We report time-resolved resonance Raman spectra for 2-fluorenylnitrene and its dehydroazepine products acquired after photolysis of 2-fluorenylnitrene in acetonitrile. The experimental Raman band frequencies exhibit good agreement with the calculated vibrational frequencies from UBPW91/cc-PVDZ density functional calculations for the singlet and triplet states of the 2-fluorenylnitrene as well as BPW91/cc-PVDZ calculations for the two dehydroazepine ring-expansion product species. The decay of the 2-fluorenylnitrene Raman signal and the appearance of the dehydroazepine products suggest the presence of an intermediate species (probably an azirine) that does not absorb very much at the 416 nm probe wavelength used in the time-resolved resonance Raman experiments. Comparison of the singlet 2-fluorenylnitrene species with the singlet 2-fluorenylnitrenium ion species indicates that protonation of the nitrene to give the nitrenium ion leads to a significant enhancement of the cyclohexadienyl character of the phenyl rings without much change of the C-N bond length.  相似文献   

9.
《Chemical physics letters》2001,331(1-2):78-85
Ultraviolet photolysis of dibromoacetonitrile in cyclohexane solution was investigated using transient resonance Raman spectroscopy. The experimental Raman vibrational frequencies were compared to those predicted from density functional theory calculations for several probable photoproduct species. Our results indicate that significant amounts of the Br–NCCHBr adduct is produced on the nanosecond time scale. We briefly discuss the probable mechanisms of formation of the Br–NCCHBr species and implications for using substituted dihaloalkanes as carbenoid agents in cyclopropanation reactions.  相似文献   

10.
An ultraviolet absorption, as well as Stokes and anti-Stokes Raman resonance scattering of spectroscopically pure SiO2 was investigated by flash photolysis technique. The whole spectrum of 'absorption and scattered bands' was recorded photographically in ultraviolet. A resonance absorption line was observed at 288.2 nm, without structure, while scattered lines were observed at 285-288.2 and 288.2-290 nm.  相似文献   

11.
A time-resolved resonance Raman (TR(3)) and computational investigation of the photochemistry of 4-acetamidophenyl azide and 4-N-methylacetamidophenyl azide in acetonitrile is presented. Photolysis of 4-acetamidophenyl azide appears to initially produce singlet 4-acetamidophenylnitrene which undergoes fast intersystem crossing (ISC) to form triplet 4-acetamidophenylnitrene. The latter species formally produces 4,4'-bisacetamidoazobenzene. RI-CC2/TZVP and TD-B3LYP/TZVP calculations predict the formation of the singlet nitrene from the photogenerated S(1) surface of the azide excited state. The triplet 4-acetamidophenylnitrene and 4,4'-bisacetamidoazobenzene species are both clearly observed on the nanosecond to microsecond time-scale in TR(3) experiments. In contrast, only one species can be observed in analogous TR(3) experiments after photolysis of 4-N-methylacetamidophenyl azide in acetonitrile, and this species is tentatively assigned to the compound resulting from dimerization of a 1,2-didehydroazepine. The different photochemical reaction outcomes for the photolysis of 4-acetamidophenyl azide and 4-N-methylacetamidophenyl azide molecules indicate that the 4-acetamido group has a substantial influence on the ISC rate of the corresponding substituted singlet phenylnitrene, but the 4-N-methylacetamido group does not. CASSCF analyses predict that both singlet nitrenes have open-shell electronic configurations and concluded that the dissimilarity in the photochemistry is probably due to differential geometrical distortions between the states. We briefly discuss the probable implications of this intriguing substitution effect on the photochemistry of phenyl azides and the chemistry of the related nitrenes.  相似文献   

12.
[reaction; see text] Picosecond and nanosecond time-resolved resonance Raman (TR(3)) spectroscopy was employed to investigate the deprotonation/ionization reaction of p-hydroxyacetophenone (HA) after ultraviolet photolysis in water solution. The TR(3) spectra in conjunction with density functional theory (DFT) calculations were used to characterize the structure and dynamics of the excited-state HA deprotonation to form HA anions in near neutral water solvent. DFT calculations based on a solute-solvent intermolecular H-bonded complex model containing up to three water molecules were used to evaluate the H-bond interactions and their influence on the deprotonation reaction and the structures of the intermediates. The deprotonation reaction was found to occur on the triplet manifold with a planar H-bonded HA triplet complex as the precursor species. The HA triplet species is generated within several picoseconds and then decays with a approximately 10 ns time constant to produce the HA triplet anion species after 267 nm photolysis of HA in water solution. The triplet anion species was observed to decay with a time constant of about 90 ns into the ground-state anion species that was found to have a lifetime of about 200 ns. The DFT calculations on the H-bonded complexes of the anion triplet and ground-states species suggest that these anion species are H-bonded complexes with planar quinonoidal structures containing two water molecules H-bonded, respectively, with oxygen lone pairs of the carbonyl and deprotonated hydroxyl moieties. A deactivation scheme of the photoexcited HA in regard to the deprotonation reaction in neutral water solutions was proposed. With the above dynamic and structural information available, we briefly discuss the possible implications of the model HA photochemistry in water solutions for the photodeprotection reactions of related p-HP phototrigger compounds in aqueous solutions.  相似文献   

13.
Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy was used to obtain the first definitive spectroscopic observation of an isopolyhalomethane O-H insertion reaction with water. The ps-TR3 spectra show that isobromoform is produced within several picoseconds after photolysis of CHBr3 and then reacts on the hundreds of picosecond time scale with water to produce a CHBr2OH reaction product. Photolysis of low concentrations of bromoform in aqueous solution resulted in noticeable formation of HBr strong acid. Ab initio calculations show that isobromoform can react with water to produce a CHBr2(OH) O-H insertion reaction product and a HBr leaving group. This is consistent with both the ps-TR3 experiments that observe the reaction of isobromoform with water to form a CHBr2(OH) product and photolysis experiments that show HBr acid formation. We briefly discuss the implications of these results for the phase dependent behavior of polyhalomethane photochemistry in the gas phase versus water solvated environments.  相似文献   

14.
The UV photolysis of dodecamethylcyclohexasilane (I) in cyclohexane at ca. 45° proceeds readily will loss of dimethylsilylene species to give two of the lower homologs, viz, decamethylcyclopentasilane and octamethylcyclotetrasilane. Prolonged photolysis leads to the formation of a significant amount of 1,4- dihydrohexamethyltetrasilane, which can be ascribed to homolytic scission of the silicon-silicon bond of the cyclotetrasilane. The photochemically generated dimethylsilylene species readily insert into siliconhydrogen or siliconmethoxy bonds of appropriate monosilane derivatives. However, photolysis of (I) in dimethyldichlorosilane affords several products whose formation may be best explained in terms of a direct reaction of photochemically excited polysilanes with chlorosilanes. Other evidence for this comes from the photolysis of tetradecamethylhexasilane in dimethyldichlorosilane.  相似文献   

15.
The structure and bonding of the chlorine atom/carbon disulfide (CS(2)/Cl) complex involved in selective photochlorination reactions with alkanes was directly probed using transient resonance Raman spectroscopy. The experimental Raman vibrational frequencies were compared to those computed from density functional theory calculations for probable structures of the CS(2)/Cl complex. Our results indicate that the S [double bond] C [double bond] S...Cl complex species is responsible for the approximately 370 nm transient absorption band observed after ultraviolet photolysis of CCl(4) in the presence of CS(2). We discuss the structure and properties of the S [double bond] C [double bond] S...Cl complex and compare them with those for the related benzene/Cl and pyridine/Cl complexes.  相似文献   

16.
Ultrafast photolysis of p-biphenylyldiazoethane (BDE) produces an excited state of the diazo compound in acetonitrile, cyclohexane, and methanol with lambdamax = 490 nm and lifetimes of less than 300 fs. The decay of the diazo excited state correlates with the growth of singlet carbene absorption at 360 nm. The optical yields of diazo excited states produced by photolysis of p-biphenylyldiazomethane (BDM) and BDE are the same; however, the optical yield of singlet p-biphenylylmethylcarbene (1BpCMe) is 30-40% less than that of p-biphenylylcarbene (1BpCH) in all three solvents. The results are explained by rearrangement in the excited state (RIES) of BDE to form p-vinylbiphenyl (VB) in parallel with extrusion of nitrogen to form 1BpCMe in reduced yield. This interpretation is consistent with product studies (ethanol-OD in cyclohexane) which indicate that there is an approximately 25% yield of VB that is formed by a mechanism that bypasses the relaxed singlet carbene. The decay of 1BpCMe is biexponential, and that of 1BpCH is monoexponential. This is attributed either to efficient relaxation of vibrationally excited 1BpCMe by 1,2 migration of hydrogen to form VB (minor) or to the increased number of low-frequency vibrational modes provided by the methyl group (major). A methyl group retards the rate of intersystem crossing (ISC), relative to a hydrogen atom, and ISC is more rapid in nonpolar solvents. Reaction of 1BpCMe with methanol is much faster than spin equilibration. Both the lifetime of 1BpCMe and 1BpCH are the same in cyclohexane and in cyclohexane-d12. This demonstrates that spin equilibration is faster than reaction of either carbene with the solvent. The lifetimes of 1BpCMe and 1BpCMe-d3 are the same in cyclohexane. This indicates that 1,2 hydrogen migration of 1BpCMe to form VB is slower than spin equilibration in cyclohexane. In acetonitrile, however, the lifetime of 1BpCMe-d3 is 1.5 times longer than that of 1BpCMe in the same solvent. Thus, in acetonitrile, where ISC is slow, the rate of 1,2 hydrogen shift of 1BpCMe is competitive with ISC. In cyclohexene, the lifetime of 1BpCH is shortened relative to that in cyclohexane. The lifetime of 1BpCMe is the same in cyclohexene and cyclohexane. The data indicate that spin relaxation is slow relative to reaction of 1BpCH with neat alkene but that spin relaxation is fast for 1BpCMe relative to reaction with neat cyclohexene.  相似文献   

17.
Aryloxenium ions 1 are reactive intermediates that are isoelectronic with the better known arylcarbenium and arylnitrenium ions. They are proposed to be involved in synthetically and industrially useful oxidation reactions of phenols. However, mechanistic studies of these intermediates are limited. Until recently, the lifetimes of these intermediates in solution and their reactivity patterns were unknown. Previously, the quinol esters 2 have been used to generate 1, which were indirectly detected by azide ion trapping to generate azide adducts 4 at the expense of quinols 3, during hydrolysis reactions in the dark. Laser flash photolysis (LFP) of 2b in the presence of O(2) in aqueous solution leads to two reactive intermediates with lambda(max) 360 and 460 nm, respectively, while in pure CH(3)CN only one species with lambda(max) 350 nm is produced. The intermediate with lambda(max) 460 nm was previously identified as 1b based on direct observation of its decomposition kinetics in the presence of N(3)(-), comparison to azide ion trapping results from the hydrolysis reactions, and photolysis reaction products (3b). The agreement between the calculated (B3LYP/6-31G(d)) and observed time-resolved resonance Raman (TR(3)) spectra of 1b further confirms its identity. The second intermediate with lambda(max) 360 nm (350 nm in CH(3)CN) has been characterized as the radical 5b, based on its photolytic generation in the less polar CH(3)CN and on isolated photolysis reaction products (6b and 7b). Only the radical intermediate 5b is generated by photolysis in CH(3)CN, so its UV-vis spectrum, reaction products, and decay kinetics can be investigated in this solvent without interference from 1b. In addition, the radical 5a was generated by LFP of 2a and was identified by comparison to a published UV-vis spectrum of authentic 5a obtained under similar conditions. The similarity of the UV-vis spectra of 5a and 5b, their reaction products, and the kinetics of their decay confirm the assigned structures. The lifetime of 1b in aqueous solution at room temperature is 170 ns. This intermediate decays with first-order kinetics. The radical intermediate 5b decomposes in a biphasic manner, with lifetimes of 12 and 75 mus. The decay processes of 5a and 5b were successfully modeled with a kinetic scheme that included reversible formation of a dimer. The scheme is similar to the kinetic models applied to describe the decay of other aryloxy radicals.  相似文献   

18.
A combined experimental and theoretical study of the UV photolysis of a typical tetrahalomethane, CBr4, in water and acetonitrile/water was performed. Ultraviolet photolysis of low concentrations of CBr4 in water mostly leads to the production of four HBr leaving groups and CO2. Picosecond time-resolved resonance Raman (Ps-TR3) experiments and ab initio calculations indicate that water-catalyzed O-H insertion/HBr elimination of the isomer of CBr4 and subsequent reactions of its products lead to the formation of these products. The UV photolyses of di-, tri-, and tetrahalomethanes at low concentrations in water-solvated environments are compared to one another. This comparison enables a general reaction scheme to be deduced that can account for the different products produced by UV photolysis of low concentrations of di-, tri-, and tetrahalomethanes in water. The fate of the (halo)formaldehyde intermediate in the chemical reaction mechanism is the key to determining how many strong acid leaving groups are produced and which carbon atom final product is likely formed by UV photolysis of a polyhalomethane at low concentrations in a water-solvated environment.  相似文献   

19.
吴世晖  武戈  陶凤岗  林子森 《化学学报》1987,45(11):1107-1111
2-(α-呋喃基)-2-苯基六甲基三硅烷在光照下可产生新型的有机硅活性中间体-α-呋喃基苯基硅烯.它与2,3-二甲基-1,3-丁二烯反应后,得到了相应的加成与插入反应产物;与环己烯反应后,再用甲醇分解所得硅杂环丙烷中间物得到了α-呋喃基环己基苯基甲氧基硅烷.  相似文献   

20.
Nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy was employed to investigate the photoinduced reactions of 3-(hydroxymethyl)benzophenone (1) in acetonitrile, 2-propanol, and neutral and acidic aqueous solutions. Density functional theory calculations were utilized to help the interpretation of the experimental spectra. In acetonitrile, the neutral triplet state 1 [denoted here as (m-BPOH)(3)] was observed on the nanosecond to microsecond time scale. In 2-propanol this triplet state appeared to abstract a hydrogen atom from the solvent molecules to produce the aryphenyl ketyl radical of 1 (denoted here as ArPK of 1), and then this species underwent a cross-coupling reaction with the dimethylketyl radical (also formed from the hydrogen abstraction reaction) to form a long-lived light absorbing transient species that was tentatively identified to be mainly 2-(4-(hydroxy(3-(hydroxymethyl)phenyl)methylene)cyclohexa-2,5-dienyl)propan-2-ol. In 1:1 H(2)O:CH(3)CN aqueous solution at neutral pH, (m-BPOH)(3) reacted with water to produce the ArPK of 1 and then underwent further reaction to produce a long-lived light absorbing transient species. Three photochemical reactions appeared to take place after 266 nm photolysis of 1 in acidic aqueous solutions, a photoreduction reaction, an overall photohydration reaction, and a novel photoredox reaction. TR(3) experiments in 1:1 H(2)O:CH(3)CN aqueous solution at pH 2 detected a new triplet biradical species, which is associated with an unusual photoredox reaction. This reaction is observed to be the predominant reaction at pH 2 and seems to face competition from the overall photohydration reaction at pH 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号