首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Gonabadi  H.  Oila  A.  Yadav  A.  Bull  S. 《Experimental Mechanics》2022,62(4):585-602
Background

Fatigue failure criteria for fibre reinforced polymer composites used in the design of marine structures are based on the micromechanical behaviour (e.g. stiffness properties) of their constituents. In the literature, there is a lack of information regarding the stiffness degradation of fibres, polymer matrix and fibre/matrix interface regions affected by environmental fatigue.

Objective

The aim of present study is to characterize the stiffness properties of composite constituents using the nanoindentation technique when fatigue failure of composites is due to the combined effect of sea water exposure and cyclic mechanical loads.

Methods

In the present study, the nanoindentation technique was used to characterize the stiffness properties of composite constituents where the effects of neighbouring phases, material pile up and viscoplasticity properties of the polymer matrix are corrected by finite element simulation.

Results

The use of finite element simulation in conjunction with nanoindentation test data, results in more accurate estimation of projected indented area which is required for measuring the properties of composite constituents. In addition, finite element simulation provides a greater understanding of the stress transfer between composite constituents during the nanoindentation process.

Conclusions

Results of nanoindentation testing on the composite microstructure of environmentally fatigue failed composite test coupons establish a strong link to the stiffness degradation of the fiber/matrix interface regions, verifying the degradation of composite constituents identified by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.

  相似文献   

2.
Gu  G. H.  Moon  J.  Park  H. K.  Kim  Y.  Seo  M. H.  Kim  H. S. 《Experimental Mechanics》2021,61(8):1343-1348
Background

Measuring true stress–strain curve over a large-strain-range is essential to understand mechanical behavior and simulate non-linear plastic deformation. The digital image correlation (DIC) technique, a non-contact full-field optical measurement technique, is a promising candidate to obtain a long-range true stress–strain curve experimentally.

Objective

This paper proposes a method for measuring true stress–strain curves over a large-strain-range during tensile testing using DIC.

Methods

The wide-strain-range true stress–strain curves of dual-phase and low carbon steels were extracted on the transverse direction in the neck region. The axial strain on the neck section was estimated by averaging the inhomogeneous deformation on the cross-section of the tensile specimen. The true stress was calculated from the engineering stress and the cross-sectional area of the neck.

Results

The validity of the proposed method was assessed by comparing the experimental load–displacement responses during tensile testing with the finite element method (FEM) simulation results. The stress and strain on the neck section estimated using the FEM and DIC, respectively, were proven to satisfy the uniaxial condition and successfully obtained.

Conclusions

The experimental results agree well with the FEM results. The proposed concept can be applied to various deformation modes for accurately measuring long-range true stress–strain curves.

  相似文献   

3.
Tinard  V.  François  P.  Fond  C. 《Experimental Mechanics》2021,61(7):1153-1160
Background

This paper deals with the possible field of application of ultrasonic Surface Reflection Method (SRM) to achieve the mechanical characteristics of isotropic materials. This method is based on the measurement of the amplitude of the reflected wave at the interface between reference material and the material to be characterised. Objective: The purpose of Part 1 of this paper is to establish the theoretical conditions for the applicability of SRM.

Methods

First, the theoretical formulas necessary to obtain the mechanical properties of the material to be tested will be established. Then, on the basis of these analytical formulas, the validity of the results for the material to be studied will be discussed according to the choice of the mechanical properties of the reference material through uncertainty calculations. The measurand error of SRM is then compared to that of traditional methods (transmission, transmission in water bath, pulse-echo).

Results

The analytical solution to the inverse problem (the mechanical characteristics of the tested medium based on those of the reference medium and the waves’ amplitude) will be given. From this analytical solution, an analysis of the measurand error will be performed and a method for choosing the reference material will be proposed.

Conclusions

It appears that SRM is better suited than traditional methods in two specific cases: measurement of small deviations of mechanical properties from a reference material or characterisation of high damping materials. In Part 2 of this paper, the practical conditions of applicability of the method are described and then applied to different kinds of materials.

  相似文献   

4.
Mojumder  J.  Choy  J. S.  Leng  S.  Zhong  L.  Kassab  G. S.  Lee  L. C. 《Experimental Mechanics》2021,61(1):131-146
Background

The mechanical stimulus (i.e., stress or stretch) for growth occurring in the pressure-overloaded left ventricle (LV) is not exactly known.

Objective

To address this issue, we investigate the correlation between local ventricular growth (indexed by local wall thickness) and the local acute changes in mechanical stimuli after aortic banding.

Methods

LV geometric data were extracted from 3D echo measurements at baseline and 2 weeks in the aortic banding swine model (n?=?4). We developed and calibrated animal-specific finite element (FE) model of LV mechanics against pressure and volume waveforms measured at baseline. After simulation of the acute effects of pressure-overload, the local changes of maximum, mean and minimum myocardial stretches and stresses in three orthogonal material directions (i.e., fiber, sheet and sheet-normal) over a cardiac cycle were quantified. Correlation between mechanical quantities and the corresponding measured local changes in wall thickness was quantified using the Pearson correlation number (PCN) and Spearman rank correlation number (SCN).

Results

At 2 weeks after banding, the average septum thickness decreased from 10.6?±?2.92 mm to 9.49?±?2.02 mm, whereas the LV free-wall thickness increased from 8.69?±?1.64 mm to 9.4?±?1.22 mm. The FE results show strong correlation of growth with the changes in maximum fiber stress (PCN?=?0.5471, SCN?=?0.5111) and changes in the mean sheet-normal stress (PCN?=?0.5266, SCN?=?0.5256). Myocardial stretches, however, do not have good correlation with growth.

Conclusion

These results suggest that fiber stress is the mechanical stimuli for LV growth in pressure-overload.

  相似文献   

5.
Background

Subsurface mechanisms can greatly affect the mechanical behavior of biological materials, but observation of these mechanisms has remained elusive primarily due to unfavorable optical characteristics. Researchers attempt to overcome these limitations by performing experiments in biological mimics like hydrogels, but measurements are generally restricted due to the spatio-temporal limitations of current methods.

Objective

Utilization of contemporary 3D printing techniques into soft, transparent, aqueous yield-stress materials have opened new avenues of approach to overcoming these roadblocks. By incorporating digital image correlation with such 3D printing techniques, a method is shown here that can acquire full-field deformation of a hydrogel subsurface in real-time.

Methods

Briefly, the method replaces the solvent of a transparent and low polymer concentration yield-stress material with an aqueous hydrogel precursor solution, then a DIC speckle plane is 3D printed into it. This complex is then polymerized using photoinitiation thereby locking the speckle plane in place.

Results

Full-field deformation measurements are made in real-time as the embedded speckle plane (ESP) responds with the bulk to the applied load. Example results of deformation and strain fields associated with indentation, relaxation, and sliding contact experiments are shown.

Conclusions

This method has successfully observed the subsurface mechanical response in the bulk of a hydrogel and has the potential to answer fundamental questions regarding biological material mechanical behaviors.

  相似文献   

6.
Choi  D. H.  Pham  T.  Loiselle  D. S.  Taberner  A. J.  Han  J.-C.  Tran  K. 《Experimental Mechanics》2021,61(1):107-117
Background

The inverse relationship between muscle stress and cross-sectional area in cardiac preparations has repeatedly been reported in intact twitching muscles. However, the critical muscle size at which diffusion-limited delivery of oxygen begins to compromise muscle stress development is smaller than what is predicted by a mathematical model of muscle oxygenation.

Objective

In a twitching muscle, while oxygenation is vital, muscle stress production is modulated by a number of other cellular processes including contractile activation and mitochondrial respiration. The objective of this study is to investigate whether these two factors can reconcile the discrepancy between predicted and observed critical muscle sizes.

Methods

In a paired experimental design, we have subjected intact rat right-ventricular trabeculae of various sizes to electrical stimulation at 2 Hz followed by either barium contracture to maximise contractile activation, or calcium contracture following muscle permeabilisation to directly supply ATP in order to obviate mitochondrial respiration.

Results

We found that the inverse relationship between muscle stress and cross-sectional area was preserved in both of these contracture modes. While, in both cases, the stresses were higher than those from twitching trabeculae, owing to higher levels of muscle activation, there was only a small increase in the critical muscle size at which stress begins to decline.

Conclusions

Our findings show that neither contractile activation nor mitochondrial respiration contributes significantly to the discrepancy between predicted and reported critical muscle sizes. Nevertheless, what is revealing is that the inverse relation between stress and muscle size in intact twitching muscles was also obtained in muscles subjected to barium and calcium contracture.

  相似文献   

7.
Rahimi  S.  Violatos  I. 《Experimental Mechanics》2022,62(2):223-236
Background

Determination of near-surface residual stresses is challenging for the available measurement techniques due to their limitations. These are often either beyond reach or associated with significant uncertainties.

Objective

This study describes a critical comparison between three methods of surface and near-surface residual stress measurements, including x-ray diffraction (XRD) and two incremental central hole-drilling techniques one based on strain-gauge rosette and the other based on electronic speckle pattern interferometry (ESPI).

Methods

These measurements were performed on standard four-point-bend beams of steel loaded to known nominal stresses, according to the ASTM standard. These were to evaluate the sensitivity of different techniques to the variation in the nominal stress, and their associated uncertainties.

Results

The XRD data showed very good correlations with the surface nominal stress, and with superb repeatability and small uncertainties. The results of the ESPI based hole-drilling technique were also in a good agreement with the XRD data and the expected nominal stress. However, those obtained by the strain gauge rosette based hole-drilling technique were not matching well with the data obtained by the other techniques nor with the nominal stress. This was found to be due to the generation of extensive compressive residual stress during surface preparation for strain gauge installation.

Conclusion

The ESPI method is proven to be the most suitable hole-drilling technique for measuring near-surface residual stresses within distances close to the surface that are beyond the penetration depth of x-ray and below the resolution of the strain gauge rosette based hole-drilling method.

  相似文献   

8.
Background

The study of the deformation of curved rods subjected to bending and its associated stress state is a complex task that has not been treated in depth in the literature, which makes difficult to obtain constitutive models or Finite Element Models (FEM) in which it is necessary to know all the components of the stress and strain tensors.

Objectives

This study focuses on a new calculation methodology to obtain stress and strain tensors of curved rods under bending.

Methods

The stress and strain tensors have been determined based on the theory of continuum mechanics and differential geometry of curves (moving bases), in a general methodology and valid for large strains, curved geometries and variable cross-sections along the specimen. This has been applied to the human rib and, in addition, a new experimental method for bending of curved specimens based on Digital Image Correlation (DIC) is presented.

Results

Both the test method and the proposed calculations applied to the human rib show results according to expectations, allowing to know the rib curvature changes along the test, the stresses and strains along the rib and the components of both stress and strain in all directions, in order to build the stress and strain tensors. In addition, the results of stress, strain and young’s modulus correspond to those of previous literature in tensile testing of human rib cortical bone.

Conclusions

The proposed calculations allow the construction of the strain and stress tensors of a curved specimen subjected to bending, which is of great importance for the development of constitutive models. Moreover, since with this method it is possible to calculate both tensors along the entire length of the specimen and in all directions, it is possible to apply this method in finite element models. Finally, the new test methodology allows to know the stress and strain in curved specimens such as the human rib, from bending tests.

  相似文献   

9.
Lee  D.  Erickson  A.  Dudley  A. T.  Ryu  S. 《Experimental Mechanics》2019,59(9):1261-1274

Growth plate cartilage resides near the ends of long bones and is the primary driver of skeletal growth. During growth, both intrinsically and extrinsically generated mechanical stresses act on chondrocytes in the growth plate. Although the role of mechanical stresses in promoting tissue growth and homeostasis has been strongly demonstrated in articular cartilage of the major skeletal joints, effects of stresses on growth plate cartilage and bone growth are not well established. Here, we review the literature on mechanobiology in growth plate cartilage at macroscopic and microscopic scales, with particular emphasis on comparison of results obtained using different methodological approaches, as well as from whole animal and in vitro experiments. To answer these questions, macroscopic mechanical stimulators have been developed and applied to study mechanobiology of growth plate cartilage and chondrocytes. However, the previous approaches have tested a limited number of stress conditions, and the mechanobiology of a single chondrocyte has not been well studied due to limitations of the macroscopic mechanical stimulators. We explore how microfluidics devices can overcome these limitations and improve current understanding of growth plate chondrocyte mechanobiology. In particular, microfluidic devices can generate multiple stress conditions in a single platform and enable real-time monitoring of metabolism and cellular behavior using optical microscopy. Systematic characterization of the chondrocytes using microfluidics will enhance our understanding of how to use mechanical stresses to control the bone growth and the properties of tissue-engineered growth plate cartilage.

  相似文献   

10.
ABSTRACT

An experimental-numerical hybrid technique for determining the contact stress distribution between two elastic bodies having both frictionless as well as bonded contact is discussed in this paper. The hybrid method makes use of experimental data collected at a section far from the contact surface and the numerically generated influence coefficients, in terms of the applied unit normal and shear stresses. The experimental data, i.e., the differences in normal stresses and the shear stress, are obtained using photoelastic analysis for the examples illustrated in this paper. When substituted into equations corresponding to the unit normal and shear stress applied in the contact region, this results in a set of algebraic equations which, when solved, allow the contact stress distribution to be obtained. This method is illustrated with examples involving simple and complex geometries of the contacting bodies.  相似文献   

11.
12.
Jin  Y.  Ren  Q.  Liu  J.  Zhang  Y.  Zheng  H.  Zhao  P. 《Experimental Mechanics》2022,62(5):761-767
Background

As a one-atom-thick material, the mechanical loading of graphene in large scale remains a challenge, and the maximum tensile strain that can be realized is through a flexible substrate, but only with a value of 1.8% due to the weak interfacial stress transfer.

Objective

Aims to illustrate the interface reinforcement brought by formvar resins as a buffering layer between graphene and substrates.

Methods

Single crystal graphene transferred to different substrates, applied with uniaxial stretching to compare the interface strength, and finite element analysis was performed to simulate tensile process for studying the influence of Poisson’s ratio of the buffering layer for interface reinforcement.

Results

In this work we use formvar resins as a buffering layer to achieve a maximum uniaxial tensile strain of 3.3% in graphene, close to the theoretical limit (3.7%) that graphene can achieve by flexible substrate stretching. The interface reinforcement by formvar is significantly higher than that by other polymers, which is attributed to the liquid–solid phase transition of formvar for more conformal interfacial contact and its suitable Poisson’s ratio with graphene to avoid its buckling along the transverse direction.

Conclusions

We believe that these results can provide guidance for the design of substrates and interfaces for graphene loading, as well as the support for mechanics analysis of graphene-based flexible electronic devices.

  相似文献   

13.
The present work is devoted to study effects of the thermally induced vibration, magnetic field and viscoelasticity in an isotropic homogeneous unbounded body with a spherical cavity. The GN model of thermoelasticity without energy dissipation is applied. The closed form solutions for distributions of displacement, temperature and radial and hoop stresses are illustrated. The boundary conditions for the temperature and mechanical and Maxwell’s stresses are employed. The solutions valid in the case of small frequency are deduced and the results are compared with the corresponding results obtained in other generalized thermoelasticity theories. The results obtained are calculated for a copper material and presented graphically. It’s deduced that the magnetic field, viscosity and thermally induced vibration are very pronounced on displacement, temperature and stresses.  相似文献   

14.
本文提出了一种基于太赫兹光谱技术的平面应力状态测量方法。该方法在传统的太赫兹时域光谱系统中引入起偏镜和检偏镜,实现了对太赫兹脉冲偏振态的调控。针对该实验系统,建立了试件所受应力与穿透试件的太赫兹波相位延迟之间的定量关系,并提出了根据实验所测太赫兹波相位延迟计算平面应力状态三个应力参量的数据处理方法。将该方法得到的实验结果和应变仪测量的结果作对比,发现两种方法有很好的一致性,证明此实验方法合理可靠。  相似文献   

15.
Abstract

Discrete models of elastoplastic structures are considered, Piecewise linear yield conditions and hardening rules are assumed. On this basis, a deformation bounding method resting on the use of fictitious loads as proposed first by Ponter [6, 7], is developed for situations in which: (a) the geometry changes affect the equilibrium equations but their effects may be expressed by bilinear terms in the pre-existing stresses and additional displacements (“second-order geometric effects”); (b) inertia and viscous damping forces play a significant role. Comparisons are made with different bounding methods previously established by the author [3,4], for the same classes of structures and mechanical situations.  相似文献   

16.
Grutzik  S.J.  Aduloju  S.  Truster  T.  Reedy  E.D. 《Experimental Mechanics》2021,61(2):411-418
Background:

Subcritical crack growth can occur in a brittle material when the stress intensity factor is smaller than the fracture toughness if an oxidizing agent (such as water) is present at the crack tip.

Objective:

We present a novel bi-material beam specimen which can measure environmentally assisted crack growth rates. The specimen is “self-loaded” by residual stress and requires no external loading.

Methods:

Two materials with different coefficient of thermal expansion are diffusion bonded at high temperature. After cooling to room temperature a subcritical crack is driven by thermal residual stresses. A finite element model is used to design the specimen geometry in terms of material properties in order to achieve the desired crack tip driving force.

Results:

The specimen is designed so that the crack driving force decreases as the crack extends, thus enabling the measurement of the crack velocity versus driving force relationship with a single test. The method is demonstrated by measuring slow crack growth data in soda lime silicate glass and validated by comparison to previously published data.

Conclusions:

The self-loaded nature of the specimen makes it ideal for measuring the very low crack velocities needed to predict brittle failure at long lifetimes.

  相似文献   

17.
18.
Meccanica - Protein mechanical vibrations play a pivotal role in biological activity. In particular, low-frequency (terahertz) modes are related to protein conformational changes, which represent...  相似文献   

19.
ABSTRACT

A method is presented providing an upper bound to the maximum shakedown deflections for elastic-perfectly plastic structures. The influence of plastic zones is taken into account. Residual stresses required by the Melan theorem can be expressed in terms of stresses due to ideal plastic hinges and of stresses due to the finite extent of plastic zones. Making use of this fact a bound on the total energy dissipated in a shakedown process as well as a bound to the permanent displacement have been derived. This bound permits an estimate of the deflections at shakedown. Application of the method is illustrated by means of two examples.  相似文献   

20.
Grobbel  M. R.  Lee  L. C.  Watts  S. W.  Fink  G. D.  Roccabianca  S. 《Experimental Mechanics》2021,61(1):191-201
Background

Hypertension drives myocardial remodeling, leading to changes in structure, composition and mechanical behavior, including residual stress, which are linked to heart disease progression in a gender-specific manner. Emerging therapies are also targeting constituent-specific pathological features. All previous studies, however, have characterized remodeling in the intact tissue, rather than isolated tissue constituents, and did not include sex as a biological variable.

Objective

In this study we first identified the contribution of collagen fiber network and myocytes to the myocardial residual stress/strain in Dahl-Salt sensitive rats fed with high fat diet. Then, we quantified the effect of hypertension on the remodeling of the left ventricle (LV), as well as the existence of sex-specific remodeling features.

Methods

We performed mechanical tests (opening angle, ring-test) and histological analysis on isolated constituents and intact tissue of the LV. Based on the measurements from the tests, we performed a stress analysis to evaluate the residual stress distribution. Statistical analysis was performed to identify the effects of constituent isolation, elevated blood pressure, and sex of the animal on the experimental measurements and modeling results.

Results

Hypertension leads to reduced residual stress/strain in the intact tissue, isolated collagen fibers, and isolated myocytes in male and female rats. Collagen remains the largest contributor to myocardial residual stress in both normotensive and hypertensive animals. We identified sex-differences in both hypertensive and normotensive animals.

Conclusions

We observed both constituent- and sex-specific remodeling features in the LV of an animal model of hypertension.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号