首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the magnetic behavior of nanosized zinc ferrite with the help of vibrating sample magnetometry and in-field Mössbauer spectroscopy. The nanoparticles of zinc ferrite with crystallite size ranging from 10 to 62 nm were synthesized by a nitrate method. The structure and phase were determined with the help of X-ray diffraction. Attributes of cation inversion were found with the calculated values of lattice parameter. The saturation magnetization decreases with the increase in crystallite size at room temperature, while these values are almost the same at 10 K for all the samples except the one with crystallite size of 10 nm. The thermal magnetization measurement shows a decrease in blocking temperature with increase in particle size for these samples. The synthesized samples exhibit the presence of antiferromagnetic ordering below the blocking temperature as investigated by in-field Mössbauer spectroscopy.  相似文献   

2.
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 °C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 Å each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 °C in a step of 100 °C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 °C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 °C due to the formation of TiNi3 and Ti2Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes.  相似文献   

3.
Magnesium ferrite nanoparticles calcined at 300 °C, 350 °C, 400 °C, 450 °C were synthesized by sol-gel method. The effects of calcinations on the cation distribution, structural and magnetic properties have been investigated. X-ray diffraction (XRD) and vibrating scanning magnetometer (VSM) were used to characterize the structural and magnetic properties. X-ray diffraction analysis revealed the formation of single phase MgFe2O4 in all the samples. Lattice constant and crystallite size increased with calcination. X-ray diffraction data were used to estimate the average cationic distribution among A site and B site. Cationic distribution shows that there is migration of cation between tetrahedral A site and octahedral B site. Saturation magnetization increased with particle size. Coercivity decreased with calcination temperature as a result of decrease in pinning effect at the grain boundary. Curie temperature (TC) decreased slightly due to weakening of A-B exchange interaction. Low temperature magnetic measurement revealed that blocking temperature (TB) increased due to strong magnetic interaction.  相似文献   

4.
We have applied a range of high-resolution X-ray diffractometry and diffraction imaging techniques to study the structural properties of CdxHg1-xTe (CMT) grown epitaxially on GaAs by MOVPE. In this paper we specifically describe three such techniques and evaluate and compare the results from each.

Automated double crystal diffractometry with a mapping facility provides information on the quality and uniformity of the layers. 004 rocking curve widths vary from < 70 arc seconds on the best samples to substantially higher values on poorer material. Study of non-uniform layers shows that lattice tilts are a dominant influence on rocking curve widths and large (up to 2°) misorientations between epilayer and substrate (100) planes are found on some samples. These characteristics are further investigated using triple crystal diffractometry. X-ray topography of the layers shows orientation-contrast features which correlate directly with the GaAs substrate dislocation distribution.

A number of layers with varying degrees of structural quality have been examined using a combination of the above techniques. Recent results are reported illustrating the value of each technique and we demonstrate how the application of a combination of X-ray diffraction techniques can be a powerful tool for investigating the nature of structural defects in this highly mismatched heteroepitaxial system.  相似文献   


5.
Abstract

The structural and optical effects of copper (50?MeV) and carbon (70?MeV) ion irradiation of low density polyethylene (LDPE) are described. X-ray diffraction (XRD) and differential scanning calorimetric (DSC) techniques were used to explore the structural behavior, while Fourier transform infrared (FTIR) and UV-visible spectroscopies were used to collect the optical data. Structural parameters, such as interplanar separation, distortion factor, crystallite size and degree of crystallinity, were measured to understand the change in the structural behavior of LDPE caused by the swift heavy ion irradiation. In the irradiated polymeric samples, the formation and growth of new carbon enriched species were revealed by the FTIR and UV-visible analysis, which led to the decrease of their optical bandgap energy with the increase of ion fluence.  相似文献   

6.
We present an investigation of properties of CoxZn1−xFe2O4 (x=0.0-1.0) nanoparticles synthesized by a polyethylene glycol (PEG)-assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating scanning magnetometry (VSM) were used to characterize the structural, morphological and magnetic properties. The particle size obtained from TEM and XRD are consistent with each other. It was observed that the lattice constant for each composition decreases with increasing Co substitution and follows Vegard's law. Magnetization measurements show that while the materials with high Zn substitution are superparamagnetic at room temperature, they are ferromagnetic at temperatures lower than the blocking temperature. The materials with less Zn substitution are ferromagnetic below room temperature. Magnetizations and the coercivities of the samples decrease with the Zn substitution. The resultant overall magnetic behavior of the superparamagnetic samples are found to be considerably different than that of conventional superparamagnetic systems due to the antiferromagnetic interactions both in intra- and inter-cluster spins, and size (effective moment) distribution of the particles.  相似文献   

7.
3,5-Disubstituted 1,2,4-oxadiazoles are a new type of liquid crystalline (LC) compounds with asymmetrical five-membered heterocycle as a central unit. They have a bent shape and are very convenient model-compounds for studying the dependence of the LC properties on the molecular design. We have also synthesized and investigated ‘banana-shaped’ 1,2,4-oxadiazoles using the ester groups as the linkage units. The new compounds exhibit spontaneous polarization in the smectic phase, even if there is no chiral group in the molecules. Preliminary experimental data suggest the presence of spontaneous polarization in the nematic phase as well. In order to study the structural properties of the LC phases, X-ray diffraction (XRD) measurements on powder samples have been carried out. Based on the XRD data, a model of the structural arrangement of the bent molecules in the smectic phase is provided, which accounts for the macroscopic spontaneous polarization as well as the ferroelectric switching behavior.  相似文献   

8.
The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (~20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (~10 nm) exhibit thermal stability of structural defects up to 500°C.  相似文献   

9.
The cobalt ferrite nanoparticles of 20 nm size were synthesized by sol-gel auto-combustion technique. The samples were irradiated with Nd:YAG laser to understand the effects of irradiation on structural, cation distribution and magnetic properties. The virgin and irradiated samples were characterized by X-ray diffraction technique. The X-ray diffraction studies at room temperature shows that defects were created in the lattice after irradiation which causes effects on structural, cation distribution and magnetic properties. The energy dispersive analysis of X-rays (EDAX) showed the chemical composition is as per the expected stichiometry. The lattice constant observed from XRD data for virgin and irradiated samples shows increasing trend after irradiation. Cation distribution was investigated by using X-ray diffraction method. We observe decrease in magnetization of the samples after irradiation. The observed reduction in the saturation magnetization after irradiation can be understood on the basis of the partial formation of paramagnetic centers and rearrangement of cations in the lattice.  相似文献   

10.
《Current Applied Physics》2015,15(3):389-396
Ultrasound assisted wet-chemical method has been carried out to incorporate different metal and non-metal ions such as; Li, S and Ag into ZnO. Characteristic studies on the structural and optical properties of the samples especially; the ultra-violet (UV) light absorption have been carried out. X-ray diffraction (XRD) analysis shows the formation of hexagonal crystal structure of ZnO along with changes in crystallinity and micro-strain with impurity doping. The morphology of the doped samples changes from particle like structure to flower and rod like structures showing the influence of dopant ions on nano ZnO growth. Infra-red (IR) transmittance spectra give information about the presence of metal–oxygen bond along with other stretching and bending modes. UV–visible absorption studies show the narrowing and sharpening of UV absorption band along with a blue shift for the doped samples. This shows the intensification in the excitonic absorption in ZnO after doping specific elements which will find application in UV blocking agents. Photoluminescence (PL) measurement shows the presence of excitonic emission and emissions due to intrinsic defects and external impurities in UV and visible regions respectively. These emission bands show a change in their position and intensity which has been explained on the basis of the existence of impurity levels in the band gap of ZnO.  相似文献   

11.
With a view to investigate the influence of microwave sintering on the structural and dielectric properties of lead zirconate titanate (PZT), the samples were prepared by citrate gel route. The well crystallized single phase perovskite PZT powders were obtained after calcination at 700 °C for 2 h. The X-ray diffraction (XRD) pattern clearly indicates the formation of PZT material with single phase. FTIR and TG-DTA studies also confirmed the formation of PZT along with the reaction process involved in the synthesis. The crystallite sizes of the samples calcined at different temperatures were calculated using Scherrer’s formula and were compared with those obtained by the transmission electron microscope (TEM) technique. The surface morphological features of all the samples were studied using a scanning electron microscope (SEM) while the chemical composition was obtained by an energy dispersive X-ray spectroscope (EDS). The variation of dielectric constant and loss tangent with temperature and frequency of both the type of samples was also investigated and the observed behavior is explained qualitatively.  相似文献   

12.
李旭  何飞  李达  陈波 《光学学报》2012,32(10):1011001-101
方孔微通道板(MCP)作为一种新型X射线波段光学成像系统,因其具有大视场、高分辨率、能够收集大量辐射并将其准直或聚焦等优点,越来越多地受到了人们的关注。但在MCP制作和加工过程中,难免会使微通道产生一定的结构缺陷,对其成像质量造成严重的影响。利用Tracepro软件建立了标准方孔MCP模型和具有不同结构缺陷的MCP模型,并基于蒙特卡罗(MTC)光线追迹方法对这些模型进行模拟成像。分别讨论了Taper型、Twist型和Nonsquare型结构缺陷对成像质量的影响。然后以溴钨灯作为光源,在可见光波段对实验室现有的4块方孔MCP进行了成像实验,所得实验结果与模拟结果基本吻合,验证了模拟结果的正确性。模拟和实验结果表明,以上3种结构缺陷均会造成十字像中央亮斑面积增大、强度降低等情况,所不同的是Taper型结构缺陷使会聚光线分裂成两条,而这两组平行的会聚线相交形成4个焦点,其能量要比单一聚焦能量衰减很多,从而对成像质量影响更大。该研究为今后研究曲面MCP和基于MCP的X射线光学系统奠定了重要基础。  相似文献   

13.
InN has attracted much attention due to its optical and electrical properties that make it suitable for the fabrication of infrared optical devices and high-speed electronic devices. In this work we report on the structural properties and morphology of InN thin films grown on different substrates by radiofrequency plasma beam assisted pulsed laser deposition. Sapphire and silicon substrates were considered for the growth of these films. The influence of substrate type and growth parameters on the morphology and structural properties of the resulting InN thin films is discussed. The structural analysis of the samples was performed by means of X-ray diffraction. The morphology of the thin films was investigated through atomic force microscopy. Although growth of InN from a metallic In target using nitrogen radiofrequency plasma assisted pulsed laser deposition was achieved for all the samples, growth conditions were found to play an important role on the crystal quality of the resulting thin films.  相似文献   

14.
The present work focuses on the structural, optical, and electrical properties of Zn1?x Cd x Se (0.1≤x≤0.25) compounds. The compounds were synthesized by solid state reaction. X-ray diffraction (XRD) patterns confirm that the samples have cubic single phase (zinc-blende) crystal structure with space group F-43m. The crystal structural parameters were refined by the Rietveld method using the FullProf program. It was found that the lattice parameters increase linearly with increasing the Cd content and obeys Vegard’s law. The refined values of the crystallite size and the bond lengths increase with increasing the Cd content. The energy band gap of the samples has been calculated and it was found that it decreased as Cd increased. The conductivity of the samples increases with increasing both of composition parameter x and temperature, and showing semiconducting behavior.  相似文献   

15.
Controlling oxygen redox reactions in transition metal oxides offers an attractive route to tune their physical properties; a topotactic structural transformation from their parent phases effectively modifies the electronic state. In this work, infinitelayered SrFeO_2 thin films were produced from brownmillerite SrFeO_(2.5) via low-temperature hydro-reduction. After the structural transition, their out-of-plane lattice constants dramatically shrank by ~12%; tensilely strained samples exhibited metallic character, whereas the compressively strained ones maintained the insulating behavior of their bulk form. According to X-ray linear dichroism results, this strain-mediated electronic anisotropy may be attributed to electron redistribution within degenerated orbitals. This suggests a possible mechanism for the metallic conductivity of infinite-layered SrFeO_2, giving a hint for understanding emergent quantum phenomena, such as the recently discovered superconductivity in nickelates, and stimulating various applications, including in ionic conductivity and oxygen catalysis.  相似文献   

16.
In the present work, we have synthesized and characterized magnetic nanoparticles of maghemite γ-Fe2O3 to study their structural and magnetic properties. For the preparation, magnetite precursor, were oxidized by adjusting the pH = 3.5 at about 80 °C in an acid medium, The mean size of the maghemite particles calculated from the X-ray diffractogram was around 5.7 nm. Mössbauer spectroscopy measurements at room temperature show their superparamagnetic behavior. Furhermore, Mössbauer measurements were carried out at 77 K and 4.2 K in order to find the typical hyperfine fields of the maghemite. Magnetite phase was not found. FC and ZFC magnetization curves measured at 500 Oe indicate a blocking temperature of 105.3 K. The magnetization measurements also show almost zero coercivity at RT. TEM images show nanoparticles with diameter smaller than 10 nm, which are in good agreement with the X-ray pattern and the fitting of the magnetization data.  相似文献   

17.
Fe doped ZnS nanoparticles with different concentrations of Fe, synthesized by microwave assisted co-precipitation method have been reported. The incorporation of Fe2+ and Fe3+ ions into ZnS lattice are confirmed by X-ray diffraction (XRD) and Electron Paramagnetic resonance (EPR) study. XRD and High Resolution Transmission electron Microscope (HRTEM) results confirm the phase purity of the samples and indicate a reduction of the particle size with increase in Fe concentration. EDAX analysis confirms the presence of Zn, S and Fe in the samples. A yellow–orange emission peak is observed in Photoluminescence (PL) spectra which exhibits the Characteristic 4T2 (4G)–6A1 (6S) transition of Fe3+ ion. The room temperature magnetic studies as analyzed from MH curves were investigated from vibrating samples magnetometer (VSM) which shows a weak ferro and superparamagnetic like behavior in 1% and 3% Fe-doped ZnS nanocrystals, whereas; at 10% Fe-doping concentrations, antiferromagnetism behavior is achieved. The ZFC-FC measurement reveals that the blocking temperature of the nanoparticle is above the room temperature.  相似文献   

18.
X-ray diffraction and magnetic force microscopy techniques were used to investigate the structural and the static magnetic properties of vapor-deposited cobalt films with various thicknesses t ranging from 50 to 195 nm. Texture measurements revealed that as the thickness increases, the films become predominantly c-axis oriented. Magnetic stripe domains structure was only observed for the thicker films, with t=195, 173 and 125 nm, while such a magnetic configuration was expected for all the samples based on the theoretical studies. Since the layers present increasing c-axis misorientation when the thickness decreases, we assume that this effect can prevent the stripe domains formation. This behavior is qualitatively explained by a simple model which describes the stripe domains structure taking into account the role of a small misorientation of the anisotropy axis.  相似文献   

19.
Mo/B4C软X射线多层膜结构特性研究   总被引:1,自引:0,他引:1  
在6.7<λ<10.0nm波段选择Mo/B4C作为多层膜材料,并采用磁控溅射法制备出多层膜样品.这些多层膜样品的周期结构为3.35nm~5.52nm.采用X射线衍射仪和透射电镜(TEM)对样品的微观结构进行研究.结构表明,这些多层膜样品的结构质量很高,并有很好的热稳定性.  相似文献   

20.
The full identification of artwork materials requires not only elemental analysis but also structural information of the compounds as provided by X-ray diffraction (XRD). This is easily done when taking samples (or micro-samples) from artworks. However, there is an increasing interest in performing non-destructive studies that require adapted XRD systems. Comparative study of synchrotron high-resolution X-ray powder diffraction (SR-HRPD) and laboratory non-destructive systems (portable XRD and micro-XRD) is the main objective of this work. There are no qualitative differences among the three systems as for detected phases in the Pompeian wall paintings that were studied, except in the case of minority phases which only were detected by SR-HRPD. The identified pigments were goethite, hematite, cinnabar, glauconite, Pompeian blue, together with calcite, dolomite and aragonite. Synchrotron XRD diagrams show better resolution than the others. In general, the peak widths in the diagrams obtained with the portable XRD system are similar to those obtained by micro-diffraction equipment. Factors such as residual divergence of X-ray sources, incidence angle and slit or collimator size are discussed in relation with the quality of XRD diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号