首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syntheses of the vinyloxycyclotriphosphazene derivatives N3P3X5OCH=CH2 (X = OMe, OCH2CF3) and the N3P3(NMe2)4(OCH=CH2)2 isomeric mixture along with improved preparations of N3P3X5OCH=CH2 (X = F, NMe2) are reported. The interactions between the vinyloxy function and the cyclophosphazene in these and the previously reported N3P3Cl5 (OCH=CH2) and N3P3F6-n(OCH=CH2)n (n = 1-4) have been examined by ultraviolet photoelectron spectroscopy (UPS) and NMR spectroscopy. The UPS data for the chloro and fluoro derivatives show a strong electron-withdrawing effect of the phosphazene on the olefin that is mediated with decreasing halogen substitution. The 1H and 13C NMR data for N3P3X5OCH=CH2 (X = F, Cl, OMe, OCH2CF3, NMe2) show significant changes as a function of the phosphazene substituent. There is a linear correlation between the beta-carbon chemical shift on the vinyloxy unit and the phosphorus chemical shift at the vinyloxyphosphorus centers. The chemical shifts of the different phosphorus centers on each ring are also related in a linear fashion. These relationships may be understood in terms of the relative electron donor-acceptor abilities of the substituents on the phosphazene ring. The 1H NMR spectra of the N3P3(NMe2)4(OCH-CH2)2 isomeric mixture allow for assignment of the relative amounts of cis and trans isomers. A model for the observed cis preference in the formation of N3P3Cl4(OCH=CH)2 is presented.  相似文献   

2.
Reaction between the Os(VI)-nitrido complex, trans-[OsVI(tpy)(Cl)2(N)]PF6 (tpy = 2,2':6',2' '-terpyridine), and ammonia (NH3) under N2 in dry CH3CN gives the mu-1,3-azido bridged [OsII-N3-OsII]- dimer, trans,trans-NH4[(tpy)(Cl)2OsII(N3)OsII(Cl)2(tpy)]. It undergoes air oxidation to give the [OsIII-N3-OsIII]+ analogue, trans,trans-[(tpy)(Cl)2OsIII(N3)OsIII(Cl)2(tpy)]PF6 ([OsIII-N3-OsIII]PF6), which has been isolated and characterized. The structural formulation as a mu-1,3-N3 bridged complex has been established by infrared and 15N NMR measurements on the 15N-labeled forms, [OsIII-14N=15N=14N-OsIII]+, [OsIII-15N=14N=15N-OsIII]+, and [OsIII-15N=15N=15N-OsIII]+. Cyclic voltammetric measurements in 0.2 M Bu4NPF6/CH3CN reveal the existence of five chemically reversible waves from 1.40 to -0.12 V for couples ranging from OsV-OsIV/OsIV-OsIV to OsIII-OsII/OsII-OsII. DeltaE1/2 values for couples adjacent to the three mixed-valence forms are 0.19 V for OsIII-OsII, 0.52 V for OsIV-OsIII, and >0.71 V for OsV-OsIV. In CH3CN at 60 degrees C, [OsIII-N3-OsIII]+ undergoes a [2 + 3] cycloaddition with CH3CN at the mu-N3- bridge followed by a solvolysis to give trans-[OsIII(tpy)(Cl)2(5-MeCN4)] and trans-[OsIII(tpy)(Cl)2(NCCH3)]PF6.  相似文献   

3.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

4.
Hexaalkylguanidinium and 2-(dialkylamino)-1,3-dimethylimidazolinium trimethyldifluorosiliconates, precursors for two stable hexaalkylguanidinium perfluoroalkoxides, were synthesized by treating commercially available bis(dialkylamino)difluoromethane derivatives with (dialkylamino)trimethylsilanes in aprotic media. With hexamethylguanidinium pentafluoroethoxide the introduction of the lipophilic and electronegative C2F5O group was straightforwardly achieved in the case of primary and secondary alkyl triflates to furnish the respective fluorinated ethers. The molecular structures of [(CH2NMe)2C(NEt2)]+[Me3SiF2]- and [C(NMe2)3]+F-*6CH2Cl2 were determined, showing in the latter case a fluoride anion octahedrally coordinated by six methylene chloride molecules via hydrogen bridges with a F...H distance of 205 pm (C...F distance 270.0(3) pm).  相似文献   

5.
New examples of [C6F5Xe]+ salts of the weakly coordinating [BY4]- (Y = CN, CF3, or C6F5) anions were synthesized by metathesis of [C6F5Xe][BF4] with MI[BY4] (MI = K or Cs; Y = CN, CF3, or C6F5) in CH3CN at -40 degrees C, and were crystallized from CH2Cl2 or from a CH2Cl2/CH3CN solvent mixture. The low-temperature (-173 degrees C) X-ray crystal structures of the [C6F5Xe]+ cation and of the [C6F5XeNCCH3]+ adduct-cation are reported for [C6F5Xe][B(CF3)4], [C6F5XeNCCH3][B(CF3)4], [C6F5Xe][B(CN)4], and [C6F5XeNCCH3][B(C6F5)4]. The [C6F5Xe]+ cation, in each structure, interacts with either the anion or the solvent, with the weakest cation-anion interactions occurring for the [B(CF3)4]- anion. The solid-state Raman spectra of the [C6F5Xe]+ and [C6F5XeNCCH3]+ salts have been assigned with the aid of electronic structure calculations. Gas-phase thermodynamic calculations show that the donor-acceptor bond dissociation energy of [C6F5XeNCCH3]+ is approximately half that of [FXeNCCH3]+. Coordination of CH3CN to [C6F5Xe]+ is correlated with changes in the partial charges on mainly Xe, the ipso-C, and N, that is, the partial charge on Xe increases and those on the ipso-C and N decrease upon coordination, typifying a transition from a 2c-2e to a 3c-4e bond.  相似文献   

6.
Depending on experimental conditions and the nature of the hydrazine, the reactions of ReCl3P3 [P = PPh(OEt)2] with RNHNH2 (R = H, CH3, tBu) afford the bis(dinitrogen) [Re(N2)2P4]+ (2+), dinitrogen ReClN2P4 (3), and methyldiazenido [ReCl(CH3N2)(CH3NHNH2)P3]+ (1+) derivatives. In contrast, reactions of ReCl3P3 [P = PPh(OEt)2, PPh2OEt] with arylhydrazines ArNHNH2 (Ar = Ph, p-tolyl) give the aryldiazenido cations [ReCl(ArN2)(ArNHNH2)P3]+ (4+) and [ReCl(ArN2)P4]+ (7+) and the bis(aryldiazenido) cations [Re(ArN2)2P3]+ (5+, 6+). These complexes were characterized spectroscopically (IR; 1H and 31P NMR), and the BPh4 complexes 1, 2, and 7 were characterized crystallographically. The methyldiazenido derivative [ReCl(CH3N2)(CH3NHNH2)(PPh(OEt)2)3][BPh4] (1) crystallizes in space group P1 with a = 15.396(5) A, b = 16.986(5) A, c = 11.560(5) A, alpha = 93.96(5) degrees, beta = 93.99(5) degrees, gamma = 93.09(5) degrees, and Z = 2 and contains a singly bent CH3N2, group bonded to an octahedral central metal. One methylhydrazine ligand, one Cl- trans to the CH3N2, and three PPh(OEt)2 ligands complete the coordination. The complex [Re(N2)2(PPh(OEt)2)4][BPh4] (2) crystallizes in space group Pbaa with a = 23.008(5) A, b = 23.367(5) A, c = 12.863(3) A, and Z = 4. The structure displays octahedral coordination with two end-on N2 ligands in mutually trans positions. [ReCl(PhN2)(PPh(OEt)2)4][BPh4] (7) crystallizes in space group P2(1)/n with a = 19.613(5) A, b = 20.101(5) A, c = 19.918(5) A, beta = 115.12(2) degrees, and Z = 4. The structure shows a singly bent phenyldiazenido group trans to the Cl- ligand in an octahedral environment. The dinitrogen complex ReClN2P4 (3) reacts with CF3SO3CH3 to give the unstable methyldiazenido derivative [ReCl(CH3N2)P4][BPh4]. Reaction of the methylhydrazine complex [ReCl(CH3N2)(CH3NHNH2)P3][BPh4] (1) with Pb(OAc)4 at -30 degrees C results in selective oxidation of the hydrazine, affording the corresponding methyldiazene derivative [ReCl(CH3N=NH)(CH3N2)P3][BPh4] (8). In contrast, treatment with Pb(OAc)4 of the related arylhydrazines [ReCl(ArN2)(ArNHNH2)P3][BPh4] (4) [P = PPh(OEt)2] gives the bis(aryldiazenido) complexes [Re(ArN2)2P3][BPh4] (5). Possible protonation reactions of Br?nsted acids HX with all diazenides, 1, 4, 5, 6, and 8, were investigated and found to proceed only in the cases of the bis(aryldiazenido) complexes 5 and 6, affording, with HCl, the octahedral [ReCl(ArN=NH)(ArN2)P3][BPh4] or [ReCl(Ar(H)NN)(ArN2)P3][BPh4] (10) (Ar = Ph; P = PPh2OEt) derivative.  相似文献   

7.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

8.
The Staudinger reaction of N(CH2CH2NR)3P [R = Me (1), Pr (2)] with 1 equiv of N3SO2C6H4Me-4 gave the ionic phosphazides [N(CH2CH2NR)3PN][SO2C6H4Me-4] [R = Me (3), R = Pr (5a)], and the same reaction of 2 with N3SO2C6H2Me3-2,4,6 gave the corresponding aryl sulfinite 5b. On the other hand, the reaction of 1 with 0.5 equiv of N3SO2Ar (Ar = C6H4Me-4) furnished the novel ionic phosphazide [[N(CH2CH2NMe)3P]2(mu-N3)][SO2Ar] (6). Data that shed light on the mechanistic pathway leading to 3 were obtained by low temperature 31P NMR spectroscopy. A crystal and molecular structure analysis of the phosphazide sulfonate [N(CH2CH2NMe)3PN3][SO3C6H4Me-4] (4), obtained by atmospheric oxidation of 3, indicated an ionic structure, the cationic part of which is stabilized by a transannular P-N bond. A crystal and molecular structure analysis of 6 also indicated an ionic structure in which the cation features two untransannulated N(CH2CH2NMe)3P cages bridged by an azido group in an eta 1: mu: eta 1 fashion. The reaction of P(NMe2)3 with N3SO2Ar (Ar = C6H4Me-4) in a 1:0.5 molar ratio furnished [[(Me2N)3P]2(mu-N3)][SO2-Ar] (11) in quantitative yield. On the other hand, the same reaction involving a 1:1 molar ratio of P(NMe2)3 and N3SO2Ar produced a mixture of 11, [(Me2N)3PN3][SO2Ar] (12), and the iminophosphorane (Me2N)3P=NSO2Ar (10). In contrast, the bicyclic tris(amino)phosphines MeC(CH2NMe)3P (7) and O=P(CH2NMe)3P (8) reacted with N3SO2-Ar (Ar = C6H4Me-4) to give the iminophosphorane MeC(CH2NMe)3P=NSO2Ar (14) (structured by X-ray means) and O=P(CH2NMe)3P=NSO2Ar (16) via the intermediate phosphazides MeC(CH2NMe)3PN3SO2Ar (13) and O=P(CH2NMe)3PN3SO2Ar (15), respectively. The variety of products obtained from the reactions of arylsulfonyl azides with proazaphosphatranes (1 and 2), acyclic P(NMe2)3, bicyclic tris(amino)phosphines 7 and 8 are rationalized in terms of steric and basicity variations among the phosphorus reagents.  相似文献   

9.
Russian Journal of General Chemistry - Complex {Co2[N(CH2CH2OH)3]2Cl2}Cl2 was obtained for the first time by the reaction of triethanolamine with cobalt chloride. It was characterized by the...  相似文献   

10.
The compounds Cl 3SiOCH 2CH 2NMe 2 ( 1) and Cl 2HSiOCH 2CH 2NMe 2 ( 2) were prepared by reactions of lithium 2-(dimethylamino)ethanolate with SiCl 4 and HSiCl 3. The analogous reaction with H 2SiCl 2 gave ClH 2SiOCH 2CH 2NMe 2 ( 3), but only in a mixture with Cl 2HSiOCH 2CH 2NMe 2 ( 2), from which it could not be separated. All compounds were characterized by IR and NMR ( (1)H, (13)C, (29)Si) spectroscopy, 1 and 2 by elemental analyses and by determination of their crystal structures. Cl 3SiOCH 2CH 2NMe 2 ( 1) and Cl 2HSiOCH 2CH 2NMe 2 ( 2) crystallize as monomeric ring compounds with pentacoordinate silicon atoms participating in intramolecular Si-N bonds [2.060(2) A ( 1), 2.037(2) A ( 2)]. The dative bonds in 1 and 2 between the silicon and nitrogen atoms could also be proven to exist at low temperatures in solution in (1)H, (29)Si-HMBC-NMR experiments by detection of the scalar coupling between the (29)Si and the protons of the NCH 2 and NCH 3 groups. A function describing the chemical shift delta exp (29)Si dependent on the chemical shifts of the individual equilibrium components, the temperature, and the free enthalpy of reaction was worked out and fitted to the experimental VT-NMR data of 1 and 2. This provided values of the free reaction enthalpies of Delta G = -28.8 +/- 3.9 kJ x mol (-1) for 1 and Delta G = -22.3 +/- 0.4 kJ x mol (-1) for 2 and estimates for the chemical shifts of open-chain (index o) and ring conformers (index r) for 1 of delta r = -94 +/- 2 ppm and delta o = -36 +/- 5 ppm and for 2 of delta r = -82 +/- 1 ppm and delta o = -33 +/- 4 ppm. The value of delta r for 1 is very close to that obtained from a solid-state (29)Si MAS NMR spectrum. Quantumchemical calculations (up to MP2/TZVPP) gave largely differing geometries for 1 (with a Si...N distance of 3.072 A), but well reproduced the geometry of 2. These differences are due to Cl...H and Cl...C repulsions and solid state effects, which can be modeled by conductor-like screening model calculations and also rationalized in terms of the topology of the electron density, which was analyzed in terms of the quantum theory of atoms in molecules.  相似文献   

11.
New examples of [C6F5Xe]+ salts of the weakly coordinating anions [B(CF3)4]-, [B(C6F5)4]-, [B(CN)4]-, and [B(OTeF5)4]- have been synthesized by metathesis reactions of [C6F5Xe][BF4] with the corresponding MI[BY4] salts (MI = K or Cs; Y = CF3, C6F5, CN, or OTeF5). The salts were characterized in solution by multi-NMR spectroscopy. Their stabilities in prototypic solvents (CH3CN and CH2Cl2) and decomposition products are reported. The influence of the coordinating nature of [BY4]- on the decomposition rate of [C6F5Xe]+ as well as the presence of the weakly nucleophilic [BF4]- ion has been studied. The electrophilic pentafluorophenylation of C6H5F by [C6F5Xe][BY4] in solvents of different coordinating abilities (CH3CN and CH2Cl2) and the effects of stronger nucleophiles (fluoride and water) on the pentafluorophenylation process have been investigated. Simulations of the 19F and 129Xe NMR spectra of [C6F5Xe]+ have provided the complete set of aryl 19F-19F and 129Xe-19F coupling constants and their relative signs. The 19F NMR parameters of the [C6F5Xe]+ cation in the present series of salts are shown to reflect the relative degrees of cation-solvent interactions.  相似文献   

12.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

13.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

14.
The reaction of the dicarbaphosphazene, [NC(NMe(2))](2)[NPCl(2)] (2), with the sodium salt of 4-hydroxy-4'-vinylbiphenyl afforded the vinyl group containing monomer [NC(NMe(2))](2)[NP(Cl)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2))] (3). Replacement of the lone chlorine atom of 3 by oxygen nucleophiles gave [NC(NMe(2))](2)[NP(OR)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2))] [R = CH(2)CF(3) (4); C(6)H(5) (5); C(6)H(4)-m-CH(3) (6); C(6)H(4)-p-Br(7)]. The X-ray crystal structures of 3-7 reveal that all the cyclodicarbaphosphazenes have a planar N(3)PC(2) ring; the ring carbons are completely planar, while the geometry around phosphorus is pseudotetrahedral. The presence of weak intermolecular hydrogen bonding [C-H---X(Cl or Br), C-H---N, or C-H---pi] interactions in 3-7 leads to the formation of polymeric architectures in the solid-state. The monomers 4-7 can be polymerized by a free-radical initiator to afford the corresponding air-stable homopolymers 8-11. These have moderate molecular weights with polydispersity indices ranging from 1.33 to 1.58. All of these polymers have high glass transition temperatures and have excellent thermal stability.  相似文献   

15.
Stability of neat hydrophobic Room-Temperature Ionic Liquids (RTIL) [BuMeIm]X, where [BuMeIm]+ is 1-butyl-3-methylimidazolium and X- is PF6-, and (CF3SO2)2N-, was studied under gamma radiolysis (137Cs) in an argon atmosphere and in air. It was found that the density, surface tension, and refraction index of RTILs are unchanged even by an absorbed dose of approximately 600 kGy. Studied RTILs exhibit considerable darkening when subjected to gamma irradiation. The light absorbance of ionic liquids increases linearly with the irradiation dose. Water has no influence on radiolytic darkening. A comparative study of [BuMeIm]X and [Bu4N][Tf2N] leads to the conclusion that the formation of colored products is related to gamma radiolysis of the [BuMeIm]+ cation. The radiolytic darkening kinetics of RTILs is influenced by the anions as follows: Cl- < (CF3SO2)2N- < PF6-. Electrospray ionization mass spectrometry and NMR analysis reveal the presence of nonvolatile radiolysis products at concentrations below 1 mol% for an absorbed dose exceeding 1200 kGy. Initial step of BuMeIm+ cation radiolysis is the loss of the Bu* group, the H* atom from the 2 position on the imidazolium ring, and the H* atom from the butyl chain. Radiolysis of ionic liquid anions yields F* and CF3* from PF6- and [Tf2N]-, respectively. Recombinations of these primary products of radiolysis lead to various polymeric and acidic species.  相似文献   

16.
The tosylate (p-toluenesulfonate) cluster [Bu4N]2[W6Cl8(p-OSO2C6H4CH3)6] (1) has been prepared and characterized by IR and NMR spectroscopy, elemental analysis, and an X-ray crystal structure. This cluster complex is shown to be a useful starting material for the preparation of pseudohalide clusters, [Bu4N]2[W6Cl8(NCQ)6] (Q = O (2), S (3), and Se (4)), in high yields. Cluster 1 also serves as a precursor to the new cluster compounds: [Bu4N]2[W6Cl8(O2CCH3)6] (5), [Bu4N]2[W6Cl8((mu-NC)Mn(CO)2(C5H5))6] (6), [W6Cl8((mu-NC)Ru(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (7), and [W6Cl8((mu-NC)Os(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (8). X-ray crystal structures are reported for 1, 4, and 5.  相似文献   

17.
The synthesis and the crystal and molecular structure of N(CH(2)CH(2)NMe)(3)P=CH(2) is reported. The P-N(ax) distance is rather long in N(CH(2)CH(2)NMe)(3)P=CH(2). The ylide N(CH(2)CH(2)NMe)(3)P=CH(2) proved to be a stronger proton acceptor than proazaphosphatrane N(CH(2)CH(2)NMe)(3)P, since it was shown to deprotonate N(CH(2)CH(2)NMe)(3)PH(+). The extremely strong basicity of the ylide is in accordance with its low ionization energy (6.3 eV), which is the lowest in the presently investigated series N(CH(2)CH(2)NMe)(3)P=E (E: CH(2), NH, lone pair, O and S), and to the best of our knowledge it is the smallest value observed for a non-conjugated phosphorus ylide. Computations reveal the existence of two bond strech isomers, and the stabilization of the phosphorus centered cation by electron donation from the equatorial and the axial nitrogens. Similar stabilizing effects operate in the case of protonation of E. A fine balance of these different interactions determines the P-N(ax) distance, which is thus very sensitive to the level of the theory applied. According to the quantum mechanical calculations, methyl substitution at the equatorial nitrogens flattens the pyramidality of this atom, increasing its electron donor capability. As a consequence, the PN(ax) distance in the short-transannular bonded protonated systems and the radical cations is longer by about 0.5 A in the N(eq)(Me) than in the N(eq)(H) systems. Accordingly, isodesmic reaction energies show that a stabilization of about 25 and 10 kcal/mol is attributable to the formation of the transannular bond in case of N(eq)(H) and the experimentally realizable N(eq)(Me) species, respectively.  相似文献   

18.
The intrinsic methylating abilities of the known biological methylating zwitterionic agents, dimethylsulfonioacetate (DMSA), (CH(3))(2)S?CH(2)CO(2)(-) (1) and glycine betaine (GB), (CH(3))(3)N?CH(2)CO(2)(-) (2), have been examined via a range of gas phase experiments involving collision-induced dissociation (CID) of their proton-bound homo- and heterodimers, including those containing the amino acid arginine. The relative yields of the products of methyl cation transfer are consistent in all cases and show that protonated DMSA is a more potent methylating agent than protonated GB. Since methylation can occur at more than one site in arginine, the [M+CH(3)](+) ion of arginine, formed from the heterocluster [DMSA+Arg+H](+), was subject to an additional stage of CID. The resultant CID spectrum is virtually identical to that of an authentic sample of protonated arginine-O-methyl ester but is significantly different to that of an authentic sample of protonated N(G)-methyl arginine. This suggests that methylation has occurred within a salt bridge complex of [DMSA+Arg+H](+), in which the arginine exists in the zwitterionic form. Finally, density functional theory calculations on the model salts, (CH(3)CO(2)(-))[(CH(3))(3)S(+)] and (CH(3)CO(2)(-))[(CH(3))(4)N(+)], show that methylation of CH(3)CO(2)(-) by (CH(3))(3)S(+) is both kinetically and thermodynamically preferred over methylation by (CH(3))(4)N(+).  相似文献   

19.
The fluoride ion acceptor properties of OsO4 and OsO3F2 were investigated. The salts [N(CH3)4][OsO4F] and [N(CH3)4]2[OsO4F2] were prepared by the reactions of OsO4 with stoichiometric amounts of [N(CH3)4][F] in CH3CN solvent. The salts [N(CH3)4][OsO3F3] and [NO][OsO3F3] were prepared by the reactions of OsO3F2 with a stoichiometric amount of [N(CH3)4][F] in CH3CN solvent and with excess NOF, respectively. The OsO4F- anion was fully structurally characterized in the solid state by vibrational spectroscopy and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO4F]: Abm2, a = 7.017(1) A, b = 11.401(2) A, c = 10.925(2) A, V = 874.1(3) A3, Z = 4, and R = 0.0282 at -50 degrees C. The cis-OsO4F2(2-) anion was characterized in the solid state by vibrational spectroscopy, and previous claims regarding the cis-OsO4F2(2-) anion are shown to be erroneous. The fac-OsO3F3- anion was fully structurally characterized in CH3CN solution by 19F NMR spectroscopy and in the solid state by vibrational spectroscopy of its N(CH3)4+ and NO+ salts and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO3F3]: C2/c, a = 16.347(4) A, b = 13.475(3) A, c = 11.436(3) A, beta = 134.128(4) degrees, V = 1808.1(7) A3, Z = 8, and R = 0.0614 at -117 degrees C. The geometrical parameters and vibrational frequencies of OsO4F-, cis-OsO4F2(2-), monomeric OsO3F2, and fac-OsO3F3- and the fluoride affinities of OsO4 and monomeric OsO3F2 were calculated using density functional theory methods.  相似文献   

20.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号