首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
以二烷基二硫代氨基甲酸钼(Mo-DTC)和六羰基钼(Mo(CO)6)为前驱体、水热法合成了分散型纳米MoS2,采用X-ray射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱分析(XPS)和程序升温脱附法(NH3-TPD)等方法对其进行了表征。利用三种烯烃(辛烯、苯乙烯、反式二苯乙烯)、苯并噻吩和蒽等构建模拟油浆体系,结合气相色谱-质谱(GC-MS)分析,对分散型纳米MoS2的模拟油浆加氢处理催化性能进行了研究。结果表明,不同预处理条件下制备出的催化活性样品均为2H-MoS2,但各样品的结晶度、颗粒尺寸、硫化程度及其酸性质等均有所不同,其中,总酸量差别较小;以Mo-DTC和Mo(CO)6为前驱体的优选硫化条件分别为380℃/30 min 和370℃/30 min,所得到的催化剂对烯烃和噻吩的加氢活性较高。其中,Mo-DTC基纳米MoS2催化剂的烯烃加氢饱和转化率高达98.10%,加氢脱硫率为94.51%,而蒽的部分加氢饱和转化率则较低,为29.47%,且无八氢蒽(8HN)或全氢蒽的生成。Mo(CO)6基纳米MoS2催化剂的加氢效果则略差,烯烃加氢饱和转化率为94.01%,加氢脱硫率为89.01%,对蒽的加氢饱和转化率为24.20%,无8HN或全氢蒽的生成。总体而言,由Mo-DTC所制备的MoS2催化剂具有烯烃高效饱和、含硫化合物高效脱硫、芳烃浅度加氢饱和的效果,且油浆加氢处理反应的选择性及催化稳定性均更高。  相似文献   

2.
采用沉淀法和溶剂热法合成了三种具有相同晶型但不同孔径的四方ZrO2t-ZrO2),以此为载体,采用沉积沉淀-硫酸锌溶液中还原的方法制备了Ru-Zn/ZrO2催化剂,考察了Ru-Zn/ZrO2催化剂的孔径对苯部分加氢性能的影响.采用粉末X射线衍射(XRD)、N2物理吸附、电感耦合等离子体原子发射光谱(ICP-AES)、CO化学吸附、X射线光电子能谱(XPS)、X射线吸收近边结构(XANES)、X射线激发俄歇电子能谱(XAES)、H2程序升温还原(H2-TPR)和透射电子显微镜(TEM)等手段对载体和催化剂进行了系统的表征.研究表明,在苯部分加氢反应中,Ru-Zn/ZrO2催化剂的孔径对环己烯的选择性有显著影响.随催化剂孔径的增大,苯的转换频率(TOF)基本不变,环己烯初始选择性(S0)则逐渐升高,孔径为11.7 nm的ZrO2(ZrO2(11.7))负载的Ru-Zn/ZrO2(11.7)催化剂的S0及得率最高,分别可达88%和54%.结合催化剂的表征和加氢结果,讨论了孔径影响苯部分加氢活性和选择性的原因.  相似文献   

3.
以Al2O3为载体,RuCl3·xH2O及Ni(NO32·6H2O为活性组分前驱体,采用吸附-沉淀法制备系列Ru-Ni/Al2O3催化剂,以马来酸二甲酯(DMS)催化加氢为探针反应,考察了活化条件和Ni的添加量对催化剂性能的影响。随Ni负载量的升高,Ru-Ni/Al2O3催化剂活性呈现先升高后降低的趋势,在Ni:Ru的原子比为6:1时(催化剂Ru1Ni6/Al)催化活性最高。催化剂Ru1Ni6/Al在氢气中200 ℃直接还原后的平均转化率与氢气中400 ℃还原后的平均转化率接近,达到了单组分Ru/Al催化剂的1.5倍以上。XPS、XRD、H2-TPR数据表明,Ru与Ni之间发生了较强的相互作用,Ni的加入促进了金属Ru在载体上的分散,提高了催化活性。  相似文献   

4.
采用共沉淀法制备了不同CuO和WO3含量的CuO-WO3-ZrO2催化剂. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 X射线荧光光谱(XRF)、 N2气物理吸附、 氢气程序升温还原(H2-TPR)、 X射线光电子能谱(XPS)及程序升温脱附(TPD)等手段对催化剂的结构和表面性质进行了表征. 结果表明, WO3的引入可以调变ZrO2的晶型, 从而使催化剂的比表面积和孔径发生变化, 促进CuO在催化剂表面的分散, 并影响催化剂的酸碱性. 在苯甲醛加氢制备苯甲醇反应中, 以CuO质量分数为18%, WO3质量分数为10%的CuO-WO3-ZrO2为催化剂时苯甲醛单程转化率达到92.03%, 产物苯甲醇的选择性为94.76%.  相似文献   

5.
采用蒸氨法制备Cu/SiO2催化剂,分别考察气相二氧化硅(SiO2-aer)、硅胶(SiO2-gel)和碱性硅溶胶(SiO2-sol)对Cu/SiO2催化剂催化甲醇裂解制氢性能的影响,并采用N2吸附-脱附、N2O化学吸附、电感耦合等离子体原子发射光谱法(ICP-AES)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等方法对催化剂进行表征。结果表明,硅源对Cu/SiO2催化剂的活性具有较大影响。以碱性硅溶胶作为硅源制得的Cu/SiO2-sol催化剂比表面积较大,活性中心粒径较小且分散均匀,这些使得其制氢性能优于其他两种硅源为载体所制备的催化剂。在反应温度280 ℃,反应压力1 MPa,甲醇质量空速0.6 h-1的条件下,相较于Cu/SiO2-aer和Cu/SiO2-gel催化剂,Cu/SiO2-sol催化剂的甲醇转化率分别提高10%和7%,气相副产物CH4和CO2浓度也有所降低,该催化剂上的甲醇转化率和气体收率分别达到98.4%和96.7%。  相似文献   

6.
采用并流共沉淀法制备了不同Zr/Cd原子比(nZr/nCd)的ZrCdOx金属氧化物,并与水热法制备的不同硅铝比(nSiO_(2)/nAl_(2O3))的片状SAPO-18分子筛物理混合制得ZrCdOx/SAPO-18双功能催化剂,研究了其催化CO2加氢直接合成低碳烯烃性能。采用透射电子显微镜(TEM)、X射线衍射(XRD)、N2吸附-脱附、CO2程序升温脱附(CO2-TPD)、NH3程序升温脱附(NH3-TPD)和X射线光电子能谱(XPS)对催化剂进行了分析。与单一ZrO2相比,引入CdO使得ZrCdOx比表面积下降,当nZr/nCd=8时制备的Zr8Cd1氧化物呈现出无定形小颗粒状,Zr与Cd之间较强的协同作用使得Zr Cd Ox氧化物产生了更多的氧空位,有利于CO2的吸附活化。通过对Zr8Cd1金属氧化物与SAPO-18(硅铝比0.1)的质量比、工艺反应温度、压力和空速对催化性能影响的考察,获得了最佳反应条件。研究还发现,当SAPO-18的硅铝比从0.1降为0.01时,Br?nsted酸含量降低,产物中烯烃/烷烃物质的量之比从18.6提高至37.2,但副产物CO含量迅速增加,低碳烯烃时空收率明显下降。  相似文献   

7.
利用天然气生产芳烃是一个有吸引力的课题,这个过程需要具有高性能活性位点的催化剂,以活化稳定的碳氢键.在甲烷直接转化方法中,将甲烷无氧脱氢芳构化(MDA)转化为高附加值芳烃(如苯、甲苯和萘)是甲烷增值的有效途径.本研究采用MoO3纳米带作为Mo源,微孔分子筛MCM-22作为载体制备双功能Mo基催化剂,结果表明MoO3纳米带高度分散在分子筛内部,与分子筛中Br?nsted酸中心结合形成有效活性中心,改善了甲烷无氧脱氢芳构化反应的催化活性,提高了催化剂的稳定性.在甲烷无氧脱氢芳构化反应测试中,当MoO3纳米带的负载量质量分数为6%时,N-Mo-HMCM-22催化剂催化的甲烷转化率达到14.1%,苯产率可达8.2%.本研究为合成高性能、稳定的MDA催化剂提供了一种更为简易的策略.  相似文献   

8.
制备了一系列具有不同酸性质的β分子筛催化剂, 通过固体核磁共振(NMR)探针分子技术对其酸性质进行了表征, 并考察了其催化葡萄糖转化为乙酰丙酸甲酯的性能. 吸附三甲基磷的31P NMR实验结果表明, 含有骨架Sn以及Al原子的Sn-Al-β催化剂同时具有Br?nsted与Lewis酸性. 通过2-13C-丙酮探针分子区分出 3种酸强度的Br?nsted酸位, 其中一种酸强度接近“超强酸”, 可能是由于空间邻近的Br?nsted酸位和Lewis酸位发生协同作用产生的. 葡萄糖转化为乙酰丙酸甲酯的催化反应结果表明, 相比于分别只含有Lewis酸位和Br?nsted酸位的Sn-β和Al-β样品以及两者的物理混合样品, Sn-Al-β分子筛催化剂具有高催化活性与产物选择性, 这主要是由于Br?nsted酸位和Lewis酸位的协同作用产生了强Br?nsted酸位, 这种强Br?nsted酸位进一步导致了更高的催化活性.  相似文献   

9.
赵敏  王雪  刘雅楠  贺宇飞  李殿卿 《化学学报》2021,79(12):1518-1525
环己酮是合成尼龙等材料的重要中间体, 但苯酚直接加氢反应制备环己酮容易生成环己醇而降低收率. 采用原位生长策略制备Pd/MgAl-LDO@Al2O3催化剂, 并用于苯酚选择性加氢反应, 获得的催化剂在高底物比条件具有良好的催化性能, 相较于Pd/Al2O3催化剂, Pd/MgAl-LDO@Al2O3催化剂使苯酚转化率显著增加, 苯酚转化率在97%时环己酮选择性可达88%. 利用X射线衍射(XRD)、程序升温脱附(TPD)、高分辨透射电子显微镜(HRTEM)和X射线光电子能谱(XPS)等手段对催化剂结构进行表征发现在氧化铝上原位生长类水滑石结构能够优化催化剂孔结构并提高活性组分分散度, 且增加了载体表面碱位点的强度, 碱位点的存在影响了苯酚的吸附形式, 从而大幅增加环己酮的选择性. 此外, 当将Ni引入层状结构时, 通过NaBH4的还原可获得PdNi合金结构. 动力学研究表明, 由于PdNi合金的形成, Pd/NiAl-LDO@Al2O3催化剂苯酚加氢反应的能垒低于Pd/MgAl-LDO@Al2O3, 同时合金结构导致环己酮选择性的明显降低.  相似文献   

10.
以烷基酚转化为轻质芳烃(苯和甲苯)为目标,制备了Cr2O3/Al2O3催化剂,并以4-乙基酚为模型化合物研究了其加氢反应性能。体积空速、氢油比、反应压力和温度升高时,脱烷基率、芳烃总选择性、轻质芳烃选择性呈先增大后减小的趋势,反应温度对转化率影响较大。以不同浓度磷酸对Cr2O3/Al2O3进行改性,随着磷酸用量的增大,催化剂酸量总体增大,主要是弱酸和中强酸,酸强度先增加后降低,磷酸用量较高时,弱酸增加幅度较大。与未改性相比,质量分数8%磷酸改性Cr2O3/Al2O3上4-乙基酚转化率99.5%,脱烷基率提升9.4%,达74.4%,轻质芳烃选择性提高4.0%,达到57.0%,以较高选择性实现了转化制轻质芳烃,同时,芳烃总选择性高达80.4%,较高程度保持了芳环不被破坏。提出了Cr2O3/Al2O3上4-乙基酚加氢反应的路径并对反应机理进行了研究。  相似文献   

11.
以二维金属-有机框架M-Co3O4为载体制备了具有高活性的Ir/M-Co3O4催化剂.采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)、 N2物理吸/脱附等方法对催化剂进行了表征,并研究了催化剂、温度、时间、溶剂等因素对香草醛加氢脱氧反应的影响.结果表明, Ir/M-Co3O4催化剂具有较好的普适性和稳定性,在香草醛加氢脱氧制备4-甲基愈创木酚(MMP)反应中表现出较高的活性和选择性,香草醛的转化率达100%, MMP的选择性不低于99%.  相似文献   

12.
以Co-Al水滑石为前驱体,经高温焙烧和H2还原得到了系列可用于环氧丙醇加氢制备1,3-丙二醇(1,3-PDO)的Cox/Al2O3催化剂.研究结果表明,Co2/Al2O3催化剂具有最好的活性、产物选择性及良好的稳定性,在80℃,2 MPa H2下反应5 h后,环氧丙醇的转化率为99.8%,1,3-PDO的收率高达68.0%;不仅高于采用相同方法制备的Ni2/Al2O3和Cu2/Al2O3催化剂,也高于Al2O3负载的Pt,Pd和Ru催化剂.研究发现活性中心Co与Al2O3载体的酸性位点之间的协同作用可能是影响催化剂的活性及1,3-PDO选择性的重要因素.  相似文献   

13.
以醋酸锰为前驱物通过浸渍法制备了MnOx/TiO2催化剂,用WO3对载体进行改性制得一系列MnOx-WO3/ TiO2催化剂,采用X射线衍射(XRD)、比表面积测定(BET)、拉曼光谱(LRS)、原位红外(FT-IR)光谱等表征技术进行相关的微观表征分析,同时在模拟氨气选择性催化还原NOx(NH3-SCR)的反应条件下对催化剂的脱硝反应活性进行了考察。研究表明,添加5%的WO3拓展了载体的比表面积,提高了催化剂的抗热性,增加了催化剂表面的Brnsted酸位,拓宽其选择性催化还原脱硝活性温度窗口,对MnOx/TiO2催化剂有很好的改性作用;先钨后锰的负载顺序优于先锰后钨;随着温度的升高,化学催化反应速率提高,催化剂表面NH3吸附峰呈减弱或消失趋势,故催化剂脱硝活性温度曲线呈中间高、两头低。  相似文献   

14.
采用固相反应法制备了钙钛矿结构的BaZr0.9Y0.1O3,并用BaZr0.9Y0.1O3作为载体负载Fe2O3,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)观察负载型催化剂的晶相结构和微观形貌,同时考察了制备的催化剂的逆水煤气反应催化活性。结果表明,BaZr0.9Y0.1O3粉体1200℃煅烧5h时,负载型催化剂具有较好的催化活性;BaZr0.9Y0.1O3对逆水煤气反应有一定的催化作用,负载少量的Fe2O3催化剂可以明显促进CO2还原,在空速为1.13h-1,温度为650℃时,CO收率可以达到31%;催化剂经过长时间运行催化效果良好,制备的催化剂活性较稳定。  相似文献   

15.
制备了一系列添加不同含量F助剂的NiWF(x)/γ-Al2O3催化剂,并采用X射线衍射(XRD)、N2吸附、X射线光电子能谱(XPS)、NH3-TPD和高分辨透射电子显微镜(HRTEM)等手段对其结构和物化性质进行了表征,同时在固定床反应器上考察了其加氢脱氮(HDN)和加氢脱硫(HDS)活性,反应原料为中国内蒙中低温煤焦油。结果显示,随着F含量的增加,催化剂孔容和孔径没有明显变化,但比表面积减小。催化剂在643 K下硫化6 h后,其硫化度随着F含量的增加而减少,强酸位数和总酸位数呈现先略微增加后减少的趋势。高分辨透射电子显微镜测试表明,硫化后的催化剂中含有具有典型层状结构的WS2。F含量对NiWF(x)/γ-Al2O3的煤焦油HDN性能有较大影响,但对其HDS活性影响很弱。  相似文献   

16.
采用活性炭为载体,乙二胺四亚甲基膦酸(EDTMPA)作为配位剂和稳定剂,氯化钯(PdCl2)为前驱体,硼氢化钠(NaBH4)为还原剂,通过一步还原制备得到膦酸功能化的超细高分散Pd/C催化剂.透射电子显微镜(TEM)及X射线衍射(XRD)分析结果表明,制得的Pd/C催化剂中Pd粒子的平均粒径为2.7 nm,分散度为37.1%,高于同类型商业化催化剂.制得的催化剂对罗丹明(RhB)和对硝基苯酚(4-NP)的催化加氢反应的活化能分别为27.18和16.79 kJ/mol,明显低于商业化Pd/C催化剂(57.12和55.71 kJ/mol).  相似文献   

17.
碳酸酯催化加氢制甲醇作为二氧化碳定向转化的间接路径具有重要意义.采用蒸氨法合成了一系列助剂铬修饰的Crx-Cu/SiO2催化剂,系统考察了其对碳酸二乙酯催化加氢性能的影响.研究表明,3 wt%铬修饰量的催化剂活性最优.在反应温度503 K、氢气压力2.5 MPa及液时空速1.0 h-1条件下,碳酸二乙酯的转化率可达99%,目标产物甲醇的收率和时空得率分别为86.2%和5.6 mmolMeOH·gcat-1·h-1.采用X射线粉末衍射(XRD)、N2吸脱附、透射电镜(TEM)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)和原位漫反射傅里叶变换红外光谱(In-situ DRIFTS)等手段表征了铬的修饰对催化剂物化性质的影响.结果表明,相较于未修饰的Cu/SiO2催化剂,少量铬修饰所得Crx-Cu/SiO2催化剂表面活性铜物种的分散度显著提高,且由部分铜和铬相互作用形成的亚铬酸铜物相优化了不同价态铜物种的表面分布状况及催化剂对底物的吸附构型,有效提升了其对碳酸二乙酯催化加氢制甲醇的反应性能和稳定性.  相似文献   

18.
采用浸渍-化学还原法制备了一系列负载型Ru催化剂,考察了一些常见的氧化物载体(SiO2m-ZrO2t-ZrO2γ-Al2O3和P25)对甲苯部分加氢制甲基环己烯催化性能的影响。采用N2物理吸附、X射线粉末衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对催化剂进行了系统的表征。研究表明,载体通过影响Ru的粒径,进而影响甲苯部分加氢催化性能。当Ru纳米粒子的粒径由2.6 nm增大到17.3 nm时,甲苯的转换频率(TOF)以及甲基环己烯初始选择性(S0)先增加,然后降低,呈火山型变化趋势,二者的最大值均在Ru粒径为3.0 nm时出现。在催化性能最优的Ru/P25催化剂上,进一步考察了修饰剂的种类和浓度、反应温度、反应压力等条件的影响。当反应温度为423 K、H2压力为5.0 MPa,以0.25 g七水合硫酸锌为修饰剂时,Ru/P25催化剂上的初始加氢速率(r0)为26 mmol·g-1·min-1,S0为57%,甲基环己烯得率可达36%。  相似文献   

19.
采用共浸渍法制备了一系列不同Fe、Co组成的Cu-Fe-Co基混合醇催化剂,对其CO加氢合成混合醇反应性能进行了考察,并采用BET比表面积分析、X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FE-SEM)及H2程序升温还原(H2-TPR)等手段对其进行了表征.结果表明:Cu-Fe二元催化剂添加适量的Co可以明显提高催化剂醇的明空收率(STY)、CO转化率,而总醇选择性不变.当活性组分Cu、Fe及助剂Co的质量分数分别为25%、22%、3%时,催化剂醇的时空收率高达205.6 g·kg-1·h-1,CO转化率为56.6%.XRD、XPS和TPR结果表明:在Cu组分含量不变时,少量Co组分的引入使催化剂表面形成微量的CuFe2O4相,促进了Cu-Fe组分间相互作用的增强,改善了催化剂活性组分的分散度,有利于提高催化剂活性及醇的时空收率;随Co含量的增大,催化剂中金属组分间的相互作用发生转变,形成了Cu-Co尖晶石相,导致催化剂的醇选择性有所下降.  相似文献   

20.
制备了V取代的磷钼酸H3+xPMo12-xVxO40x=0,1,2)及1-丁基-3-甲基咪唑溴盐离子液体([C4mim]Br),并采用离子交换的方法制备了系列杂化材料([C4mim]3+xPMo12-xVxO40,x=0,1,2);采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)对所制备样品进行了表征;以H2O2为氧化剂,考察了所得样品催化苯羟基化制苯酚的活性。结果表明,和相应的离子液体及杂多酸相比,杂化材料的催化活性得到了很大的提高,尤其是催化剂[C4mim]5PMo10V2O40,在优化后的条件下,苯的转化率可达到21%,苯酚的选择性在99%以上。而且,该催化剂具有很好的可重复使用性,连续使用五次后,苯的转化率和苯酚的选择性没有明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号