首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the use of surface plasmon resonance (SPR) imaging for direct detection of small-molecule binding to surface-bound DNA probes. Using a carefully designed array surface, we quantitatively discriminate between the interactions of a model drug with different immobilized DNA binding sites. Specifically, we measure the association and dissociation intercalation rates of actinomycin-D (ACTD) to and from double-stranded 5'-TGCT-3' and 5'-GGCA-3' binding sites. The rates measured provide mechanistic information about the DNA-ACTD interaction; ACTD initially binds nonspecifically to DNA but exerts its activity by dissociating slowly from strong affinity sites. We observe a slow dissociation time of kd-1 = 3300 +/- 100 s for ACTD bound to the strong affinity site 5'-TGCT-3' and a much faster dissociation time (210 +/- 15 s) for ACTD bound weakly to the site 5'-GGCA-3'. These dissociation rates, which differ by an order of magnitude, determine the binding affinity for each site (8.8 x 10(6) and 1.0 x 10(6) M(-1), respectively). We assess the effect the surface environment has on these biosensor measurements by determining kinetic and thermodynamic constants for the same DNA-ACTD interactions in solution. The surface suppresses binding affinities approximately 4-fold for both binding sites. This suppression suggests a barrier to DNA-drug association; ACTD binding to duplex DNA is approximately 100 times slower on the surface than in solution.  相似文献   

2.
采用表面等离子体共振(SPR)技术, 在模拟生理条件下实时动态研究了8种典型多溴联苯醚(PBDEs)与人血清白蛋白(HSA)相互作用的动力学和热力学行为. 通过分子对接模拟研究了PBDEs与HSA相互作用的分子机制, 探讨了不同PBDEs与蛋白的结合模式及作用力. 动力学实验结果表明, PBDEs中溴原子的个数和取代位置对相互作用有规律性的影响. 溴原子通过改变PBDEs分子与HSA作用过程中的解离速率来影响其亲和力, 溴原子个数越多, PBDEs与HSA作用的亲和力越强; 而取代基位置则影响PBDEs与HSA作用结合速率的快慢, 同分异构体中间位取代溴的亲和力大于邻位取代溴. 分子对接结果显示, 8种PBDEs主要结合于HSA的Site I位点, 但结合位点周边氨基酸残基类型的差异影响了结合力. 范德华力和氢键对结合能的贡献远大于静电力.  相似文献   

3.
A surface plasmon resonance (SPR) biosensor that carries DNA-binding small ligands has been developed for the detection of single-nucleotide polymorphisms (SNPs). 3,5-Diaminopyrazine derivatives, with a hydrogen-bonding profile fully complementary to the thymine base, were utilized as recognition elements on the sensor surface, and a target single-stranded DNA sequence was hybridized with a DNA probe containing an abasic site to place this site opposite a nucleobase to be detected. In a continuous flow of sample solutions buffered to pH 6.4 (0.25 M NaCl), the 3,5-diaminopyrazine-based SPR sensor can detect an orphan nucleobase in the duplex with a clear selectivity for thymine over cytosine, guanine, and adenine (5'-GTT GGA GCT GXG GGC GTA GGC-3'/3'-CAA CCT CGA CNC CCG CAT CCG-5'; X=abasic site, N=target nucleobase G, C, A, or T). The SPR response was linear in the concentration range 10-100 nM. Allele discrimination is possible based on the combination of different binding surfaces in a flow cell of the SPR system, which is demonstrated for the analysis of the thymine/cytosine mutation present in 63-meric polymerase chain reaction (PCR) amplification products (Ha-ras gene, codon 12, antisense strand). Comparison with a bulk assay based on 3,5-diaminopyrazine/DNA binding shows that the immobilization of 3,5-diaminopyrazine derivatives on the SPR sensor allows more sensitive detection of the target DNA sequence, and binding selectivity can be tuned by controlling the salt concentration of sample solutions. These features of the DNA-binding small-molecule-immobilized SPR sensor are discussed as a basis for the design of SPR biosensors for SNP genotyping.  相似文献   

4.
各种体外实验技术被广泛地用来研究DNA-蛋白质之间的相互作用, 但体外和体内实验一个最明显的区别是实验使用的DNA片段远远短于基因组DNA, 因而多出了大量线性DNA分子末端. 末端问题曾倍受关注, 若干研究小组在不同系统中对其进行了研究, 但结果却并不一致, 甚至完全相反. 本文利用表面等离子共振技术(SPR)对一系列不同长度非特异DNA和Mnt阻遏蛋白结合和解离过程进行实时监测, 结果表明该蛋白在线性DNA分子末端有比内部位点更高的解离速率. 通过考察在不同位点含有特异序列的DNA与Mnt阻遏蛋白的结合过程, 发现线性DNA分子末端在一定距离内会直接影响DNA与该蛋白的特异性结合.  相似文献   

5.
Pyrrole (Py)-imidazole (Im)-containing polyamides bind in the minor groove of DNA and can recognize specific sequences through a stacked antiparallel dimer. It has been proposed that there are two different low energy ways to form the stacked dimer and that these are sensitive to the presence of a terminal formamido group: (i) a fully overlapped stacking mode in which the N-terminal heterocycles of the dimer stack on the amide groups between the two heterocycles at the C-terminal and (ii) a staggered stacking mode in which the N-terminal heterocycles are shifted by approximately one unit in the C-terminal direction (Structure 1997, 5, 1033-1046). Two different DNA sequences will be recognized by the same polyamide stacked in these two different modes. Despite the importance of polyamides as sequence specific DNA recognition agents, these stacking possibilities have not been systematically explored. As part of a program to develop agents that can recognize mismatched base pairs in DNA, a set of four polyamide trimers with and without terminal formamido groups was synthesized, and their interactions with predicted DNA recognition sequences in the two different stacking modes were evaluated. Experimental difficulties in monitoring DNA complex formation with polyamides were overcome by using surface plasmon resonance (SPR) detection of the binding to immobilized DNA hairpin duplexes. Both equilibrium and kinetic results from SPR show that a terminal formamido group has a pronounced effect on the affinity, sequence specificity, and rates of DNA-dimer complex formation. The formamido polyamides bind preferentially in the staggered stacking mode, while the unsubstituted analogues bind in the overlapped mode. Affinities for cognate DNA sequences increase by a factor of around 100 when a terminal formamido is added to a polyamide, and the preferred sequences recognized are also different. Both the association and the dissociation rates are slower for the formamido derivatives, but the effect is larger for the dissociation kinetics. The formamido group thus strongly affects the interaction of polyamides with DNA and changes the preferred DNA sequences that are recognized by a specific polyamide stacked dimer.  相似文献   

6.
Human immunoglobulin E (hIgE) is such an important protein, because of its involvement in allergic disease, that it is of significance to study the interactions between it and its recognizing elements. In this report an analytical strategy based on surface plasmon resonance (SPR) was developed to probe the pattern of interaction between hIgE and its recognizing molecules, including aptamers and antibodies. The affinity constants of hIgE for the antibody and the aptamer were compared first; the aptamer has more affinity than the antibody for human IgE. To study their pattern of interaction, three different binding approaches, including adding the antibody and the streptavidin-coupled aptamer to the sensing surface, were designed. The results showed that hIgE captured on the sensing surface could form a multivalent complex with the aptamer. An ELISA-like assay using the aptamer as both capture and detection probes was then developed. This work highlights an SPR method for characterizing the interaction between the protein and aptamers that is useful for study of biomolecular interaction patterns and binding properties. Figure Schematic diagram of the use of surface plasmon resonance for detection of the pattern of interaction of human IgE with its DNA aptamer and antibody  相似文献   

7.
Pyrrole-imidazole (Py-Im) polyamides containing stereospecifically alpha-amino- or alpha-hydroxyl-substituted gamma-aminobutyric acid as a 5'-TG-3' recognition element were synthesized by machine-assisted Fmoc solid-phase synthesis. Their binding properties to predetermined DNA sequences containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T, T.A, G.C, and C.G) were then systematically studied by surface plasmon resonance (SPR). SPR results revealed that the pairing of stereospecifically alpha-amino-/alpha-hydroxyl-substituted gamma-aminobutyric acids, (R or S)-alpha,gamma-diaminobutyric acid (gammaRN or gammaSN) and (R or S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaRO or gammaSO), side-by-side with beta-alanine (beta) in such polyamides significantly influenced the DNA binding affinity and recognition specificity of hairpin polyamides in the DNA minor groove compared with beta/beta, beta/gamma, and gamma/beta pairings. More importantly, the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) favorably binds to a hairpin DNA containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T) with dissociation equilibrium constant (K(D)) of 1.9 x 10(-)(7) M over N.N' = T.A with K(D) = 3.7 x 10(-)(6) M, with a 19-fold specificity. By contrast, Ac-Im-gammaSN-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSN) binds to the above sequence with N.N' = A.T with K(D) = 8.7 x 10(-)(7) M over N.N' = T.A with K(D) = 8.4 x 10(-)(6) M, with a 9.6-fold specificity. The results also show that the stereochemistry of the alpha-substituent, as well as the alpha-substituent itself may greatly alter binding affinity and recognition selectivity of hairpin polyamides to different DNA sequences. Further, we carried out molecular modeling studies on the binding by an energy minimization method, suggesting that alpha-hydroxyl is very close to N3 of the 3'-terminal G to induce the formation of hydrogen bonding between hydroxyl and N3 in the recognition event of the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) to 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T). Therefore, SPR assays and molecular modeling studies collectively suggest that the (S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaSO) may act as a 5'-TG-3' recognition unit.  相似文献   

8.
Carbohydrate arrays fabricated on gold films were used to study carbohydrate-protein interactions with surface plasmon resonance (SPR) imaging. An immobilization scheme consisting of the formation of a surface disulfide bond was used to attach thiol-modified carbohydrates onto gold films and to fabricate carbohydrate arrays. The carbohydrate attachment steps were characterized using polarization modulation Fourier transform infrared reflection absorption spectroscopy; and poly(dimethylsiloxane) microchannels were used to immobilize probe compounds at discrete locations on a gold film. The binding of the carbohydrate-binding proteins concanavalin A (ConA) and jacalin to arrays composed of the monosaccharides mannose and galactose was monitored with SPR imaging. SPR imaging measurements were employed to accomplish the following: (i) construct adsorption isotherms for the interactions of ConA and jacalin to the carbohydrate surfaces, (ii) monitor protein binding to surfaces presenting different compositions of the immobilized carbohydrates, and (iii) measure the solution equilibrium dissociation constants for ConA and jacalin toward mannose and galactose, respectively. Adsorption coefficients (K(ADS)) of 2.2 +/- 0.8 x 10(7) M(-)(1) and 5.6 +/- 1.7 x 10(6) M(-)(1) were obtained for jacalin adsorbing to a galactose surface and ConA adsorbing to a mannose surface, respectively. The solution equilibrium dissociation (K(D)) constant for the interaction of jacalin and galactose was found to be 16 +/- 5 microM, and for ConA and mannose was found to be 200 +/- 50 microM.  相似文献   

9.
表面等离子体共振 ( Surface plasmon resonance,SPR)技术是近年来发展起来的测定分子间相互作用的技术 ,应用最广泛的是 Pharmacia公司发展的生物分子相互作用实时分析 ( Biomolecular interactionanalysis,BIA)技术 [1~ 3] .它可以实时、原位地测定生物大分子间的相互作用 ,而反应物无需标记 ,可以测定反应的动力学常数 ,这对于进行反应的动力学分析和机理研究 ,以及进行性质鉴定和筛选应用具有非常重要的意义 [4~ 8] .肿瘤坏死因子 ( Tumor necrosis factor,TNF)是临床上用于肿瘤治疗的非常有效的细胞因子类药物 [9] .本文报道了…  相似文献   

10.
A predictive approach using fractal analysis is presented for analyte-receptor binding and dissociation kinetics for biosensor applications. Data taken from the literature may be modeled, in the case of binding using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis represents a change in the binding mechanism as the reaction progresses on the surface. A single-fractal analysis is adequate to model the dissociation kinetics in the examples presented. Predictive relationships developed for the binding and the affinity (k(diss)/k(bind)) as a function of the analyte concentration are of particular value since they provide a means by which the binding and the affinity rate coefficients may be manipulated. Relationships are also presented for the binding and the dissociation rate coefficients and for the affinity as a function of their corresponding fractal dimension, D(f), or the degree of heterogeneity that exists on the surface. When analyte-receptor binding or dissociation is involved, an increase in the heterogeneity on the surface (increase in D(f)) leads to an increase in the binding and in the dissociation rate coefficient. It is suggested that an increase in the degree of heterogeneity on the surface leads to an increase in the turbulence on the surface owing to the irregularities on the surface. This turbulence promotes mixing, minimizes diffusional limitations, and leads subsequently to an increase in the binding and in the dissociation rate coefficient. The binding and the dissociation rate coefficients are rather sensitive to the degree of heterogeneity, D(f,bind) (or D(f1)) and D(f,diss), respectively, that exists on the biosensor surface. For example, the order of dependence on D(f,bind) (or D(f1)) and D(f2) is 6.69 and 6.96 for k(bind,1) (or k(1)) and k(2), respectively, for the binding of 0.085 to 0.339 μM Fab fragment 48G7(L)48G7(H) in solution to p-nitrophenyl phosphonate (PNP) transition state analogue immobilized on a surface plasmon resonance (SPR) biosensor. The order of dependence on D(f,diss) (or D(f,d)) is 3.26 for the dissociation rate coefficient, k(diss), for the dissociation of the 48G7(L)48G7(H)-PNP complex from the SPR surface to the solution. The predictive relationships presented for the binding and the affinity as a function of the analyte concentration in solution provide further physical insights into the reactions on the surface and should assist in enhancing SPR biosensor performance. In general, the technique is applicable to other reactions occurring on different types of biosensor surfaces and other surfaces such as cell-surface reactions. Copyright 2000 Academic Press.  相似文献   

11.
We report on the use of PDMS multichannels for affinity studies of DNA aptamer–human Immunoglobulin E (IgE) interactions by surface plasmon resonance imaging (SPRi). The sensing surface was prepared with thiol-terminated aptamers through a self-assembling process in the PDMS channels defined on a gold substrate. Cysteamine was codeposited with the thiol aptamers to promote proper spatial arrangement of the aptamers and thus maintain their optimal binding efficiencies. Four aptamers with different nucleic acid sequences were studied to test their interaction affinity toward IgE, and the results confirmed that aptamer I (5′-SH-GGG GCA CGT TTA TCC GTC CCT CCT AGT GGC GTG CCC C-3′) has the strongest binding affinity. Control experiments were conducted with a PEG-functionalized surface and IgG was used to replace IgE in order to verify the selective binding of aptamer I to the IgE molecules. A linear concentration-dependent relationship between IgE and aptamer I was obtained, and a 2-nM detection limit was achieved. SPRi data were further analyzed by global fitting, and the dissociation constant of aptamer I–IgE complex was found to be 2.7 × 10−7 M, which agrees relatively well with the values reported in the literature. Aptamer affinity screening by SPR imaging demonstrates marked advantages over competing methods because it does not require labeling, can be used in real-time, and is potentially high-throughput. The ability to provide both qualitative and quantitative results on a multichannel chip further establishes SPRi as a powerful tool for the study of biological interactions in a multiplexed format. Figure The SPRi sensograms and thier global fits for aptamer I and IgE interactions. Insert in the difference image obtained with the PDMS microchannel flow cell for aptamer IV, III, and I (from left to right  相似文献   

12.
A fractal analysis is used to model the binding and dissociation kinetics between analytes in solution and estrogen receptors (ER) immobilized on a sensor chip of a surface plasmon resonance (SPR) biosensor. Both cases are analyzed: unliganded as well as liganded. The influence of different ligands is also analyzed. A better understanding of the kinetics provides physical insights into the interactions and suggests means by which appropriate interactions (to promote correct signaling) and inappropriate interactions such as with xenoestrogens (to minimize inappropriate signaling and signaling deleterious to health) may be better controlled. The fractal approach is applied to analyte-ER interaction data available in the literature. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor chip surface. In general, the binding and the dissociation rate coefficients are very sensitive to the degree of heterogeneity on the surface. For example, the binding rate coefficient, k, exhibits a 4.60 order of dependence on the fractal dimension, D(f), for the binding of unliganded and liganded VDR mixed with GST-RXR in solution to Spp-1 VDRE (1,25-dihydroxyvitamin D(3) receptor element) DNA immobilized on a sensor chip surface (Cheskis and Freedman, Biochemistry 35 (1996) 3300-3318). A single-fractal analysis is adequate in some cases. In others (that exhibit complexities in the binding or the dissociation curves) a dual-fractal analysis is required to obtain a better fit. A predictive relationship is also presented for the ratio K(A)(=k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). This has biomedical and environmental implications in that the dissociation and binding rate coefficients may be used to alleviate deleterious effects or enhance beneficial effects by selective modulation of the surface. The K(A) exhibits a 112-order dependence on the ratio of the fractal dimensions for the ligand effects on VDR-RXR interaction with specific DNA.  相似文献   

13.
The interaction between the musk fragrance acid-traseolide and monoclonal antibodies (mAB) generated against this odorant has been investigated with two different techniques. Fluorescence spectroscopy was used to study the quenching of tryptophan fluorescence of the antibody upon binding acid-traseolide. This spectroscopic approach is based on measurements under equilibrium conditions. The second technique exploited the surface plasmon resonance (SPR) phenomenon. The acid-traseolide was immobilized in the surface matrix and upon presenting mAB changes in SPR were recorded in real time during the association reaction. The SPR approach can be considered as a kinetic method. Although having a different origin, both methods lead to comparable equilibrium dissociation constants (Kd). However, the results obtained with fluorescence spectroscopy were more accurate and reproducible. Not only the association of acid-traseolide with antibody was evaluated, also Fab fragment and peptide (H3-peptide) mimicking the heavy chain CDR3 of this antibody were included in this study. The Kd-values, determined by both methods, increase in the order mAB < Fab < H3-peptide because of diminishing recognition.  相似文献   

14.
Glycopeptide antibiotics, such as vancomycin and teicoplanin, are used to treat life‐threatening infections caused by multidrug‐resistant Gram‐positive pathogens. They inhibit bacterial cell wall biosynthesis by binding to the D ‐Ala‐D ‐Ala C‐terminus of peptidoglycan precursors. Vancomycin‐resistant bacteria replace the dipeptide with the D ‐Ala‐D ‐Lac depsipeptide, thus reducing the binding affinity of the antibiotics with their molecular targets. Herein, studies of the interaction of teicoplanin, teicoplanin‐like A40926, and of their semisynthetic derivatives (mideplanin, MDL63,246, dalbavancin) with peptide analogues of cell‐wall precursors by NMR spectroscopy and surface plasmon resonance (SPR) are reported. NMR spectroscopy revealed the existence of two different complexes in solution, when the different glycopeptides interact with Ac2Kd AlaD AlaOH. Despite the NMR experimental conditions, which are different from those employed for the SPR measurements, the NMR spectroscopy results parallel those deduced in the chip with respect to the drastic binding difference existing between the D ‐Ala and the D ‐Lac terminating analogues, confirming that all these antibiotics share the same primary molecular mechanism of action and resistance. Kinetic analysis of the interaction between the glycopeptide antibiotics and immobilized AcKd AlaD AlaOH by SPR suggest a dimerization process that was not observed by NMR spectroscopy in DMSO solution. Moreover, in SPR, all glycopeptides with a hydrophobic acyl chain present stronger binding with a hydrophobic surface than vancomycin, indicating that additional interactions through the employed surface are involved. In conclusion, SPR provides a tool to differentiate between vancomycin and other glycopeptides, and the calculated binding affinities at the surface seem to be more relevant to in vitro antimicrobial activity than the estimations from NMR spectroscopy analysis.  相似文献   

15.
Heat Shock Protein 70s (HSP70s) are key molecular chaperones that are overexpressed in many cancers and often associated with metastasis and poor prognosis. It has proven difficult to develop ATP-competitive, drug-like small molecule inhibitors of HSP70s due to the flexible and hydrophilic nature of the HSP70 ATP-binding site and its high affinity for endogenous nucleotides. The aim of this study was to explore the potential for the inhibition of HSP70 through alternative binding sites using fragment-based approaches. A surface plasmon resonance (SPR) fragment screen designed to detect secondary binding sites in HSP70 led to the identification by X-ray crystallography of a cryptic binding site in the nucleotide-binding domain (NBD) of HSP70 adjacent to the ATP-binding site. Fragment binding was confirmed and characterized as ATP-competitive using SPR and ligand-observed NMR methods. Molecular dynamics simulations were applied to understand the interactions with the protein upon ligand binding, and local secondary structure changes consistent with interconversion between the observed crystal structures with and without the cryptic pocket were detected. A virtual high-throughput screen (vHTS) against the cryptic pocket was conducted, and five compounds with diverse chemical scaffolds were confirmed to bind to HSP70 with micromolar affinity by SPR. These results identified and characterized a new targetable site on HSP70. While targeting HSP70 remains challenging, the new site may provide opportunities to develop allosteric ATP-competitive inhibitors with differentiated physicochemical properties from current series.  相似文献   

16.
We developed a biosensor based on the surface plasmon resonance (SPR) method for the study of the binding kinetics and detection of human cellular prions (PrPC) using DNA aptamers as bioreceptors. The biosensor was formed by immobilization of various biotinylated DNA aptamers on a surface of conducting polypyrrole modified by streptavidin. We demonstrated that PrPC interaction with DNA aptamers could be followed by measuring the variation of the resonance angle. This was studied using DNA aptamers of various configurations, including conventional single-stranded aptamers that contained a rigid double-stranded supporting part and aptamer dimers containing two binding sites. The kinetic constants determined by the SPR method suggest strong interaction of PrPC with various DNA aptamers depending on their configuration. SPR aptasensors have a high selectivity to PrPC and were regenerable by a brief wash in 0.1 M NaOH. The best limit of detection (4 nM) has been achieved with this biosensor based on DNA aptamers with one binding site but containing a double-stranded supporting part.
Fig
Aptasensors for kinetic evaluation and detection of prions by SPR  相似文献   

17.
We demonstrate the quantitative characterization of DNA-DNA and DNA-drug interactions by angle-resolved surface plasmon resonance (SPR) imaging. Combining the angle-scanning capabilities of traditional SPR with the spatial definition capabilities of imaging, we directly measure DNA and drug surface coverages and kinetics simultaneously for multiple patterned spots. We find excellent agreement of DNA-DNA hybridization kinetics and thermodynamics measured by both the imaging system and traditional SPR. Instrument response and sensitivity is further demonstrated by successful measurement of association and dissociation kinetics of actinomycin-D binding to a low-density doubled-stranded DNA binding sequence. Without independent calibration, analysis of angle-resolved SPR imaging data yields 2.9 +/- 0.1 drugs per duplex at saturation coverage, consistent with all available duplex binding sites being occupied.  相似文献   

18.
A novel molecular tool for double-stranded (ds) DNA detection using synthetic peptide is described. The peptide was designed based on the DNA binding domain of the lambda phage CRO repressor (CRO). The designed peptides contain helix-turn-helix (HTH), which is DNA binding motif. A cyclic peptide and a mutant peptide based on CRO were also designed, and the resulting affinity for dsDNA was increased. Furthermore, native amino acids of the peptide were replaced with arginine to increase the affinity for dsDNA. The affinity of these peptides for DNA binding was assessed by surface plasmon resonance (SPR) technique.  相似文献   

19.
表面等离子共振(SPR)近年来迅速发展为用于分析生物分子相互作用的一项技术.该技术无需标记、特异性强、灵敏度高、样品用量小,可实现在线连续实时检测.目前SPR已被广泛应用于免疫学、蛋白质组学、药物筛选、细胞信号转导、受体/配体垂钓等领域.该文阐述了基于表面等离子体共振技术生物传感器的基本原理和技术流程,综述了SPR在蛋白质-蛋白质相互作用动力学研究、蛋白质结构及功能研究、蛋白质突变和碎片分析、信号转导中的应用以及SPR在蛋白质-蛋白质相互作用研究中的多项关键技术.指出SPR通过与光谱、电化学等多技术联用后,可以获得更加详实的信息.  相似文献   

20.
Enzymatic reactions typically involve complex dynamics during substrate binding, conformational rearrangement, chemistry, and product release. The noncovalent steps provide kinetic checkpoints that contribute to the overall specificity of enzymatic reactions. DNA polymerases perform DNA replication with outstanding fidelity by actively rejecting noncognate nucleotide substrates early in the reaction pathway. Substrates are delivered to the active site by a flexible fingers subdomain of the enzyme, as it converts from an open to a closed conformation. The conformational dynamics of the fingers subdomain might also play a role in nucleotide selection, although the precise role is currently unknown. Using single-molecule F?rster resonance energy transfer, we observed individual Escherichia coli DNA polymerase I (Klenow fragment) molecules performing substrate selection. We discovered that the fingers subdomain actually samples through three distinct conformations--open, closed, and a previously unrecognized intermediate conformation. We measured the overall dissociation rate of the polymerase-DNA complex and the distribution among the various conformational states in the absence and presence of nucleotide substrates, which were either correct or incorrect. Correct substrates promote rapid progression of the polymerase to the catalytically competent closed conformation, whereas incorrect nucleotides block the enzyme in the intermediate conformation and induce rapid dissociation from DNA. Remarkably, incorrect nucleotide substrates also promote partitioning of DNA to the spatially separated 3'-5' exonuclease domain, providing an additional mechanism to prevent misincorporation at the polymerase active site. These results reveal the existence of an early innate fidelity checkpoint, rejecting incorrect nucleotide substrates before the enzyme encloses the nascent base pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号