首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H(2)S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H(2)S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H(2)S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed.  相似文献   

2.
Density functional theory calculations have been carried out on the CO/H2 coadsorption on the (001), (110), and (100) surfaces of Fe5C2 for the understanding of the Fischer-Tropsch synthesis (FTS) mechanism. The stable surface species changes with the variation of the H2 and CO coverage. Along with dissociated hydrogen and adsorbed CO in 2-, 3-, and 4-fold configurations, methylidyne (C(s)H) (C(s), surface carbon), ketenylidene (C(s)CO), ketenyl (C(s)HCO), ketene (C(s)H2CO), and carbon suboxide (C(s)C2O2) are computed as thermodynamically stable surface species on Fe5C2(001) and Fe5C2(110) containing both surface iron and carbon atoms. These surface carbon species can be considered as the preliminary stages for FTS. On Fe5C2(100) with only iron atoms on the surface layer, the stable surface species is dissociated hydrogen and CO with top and 2-fold configurations. The bonding nature of these adsorbed carbon species has been analyzed.  相似文献   

3.
李赣  罗文华  陈虎翅 《物理化学学报》2011,27(10):2319-2325
采用广义梯度密度泛函理论研究了0.25ML覆盖度下CO2在α-U(001)表面上的吸附和解离,得到了CO2的稳定吸附构型和吸附能,确定了CO2的解离过渡态和解离能垒,探讨了CO2与表面U原子的相互作用本质.结果表明CO2趋向以C(O)-U多键结合方式在α-U(001)面发生强化学吸附,吸附能为1.24-1.67 eV;C-O键的活化程度依赖于表面电子向CO2发生转移的程度.CO2与表面U原子的相互作用主要来自于U原子电子向CO2最低空轨道(LUMO)2πu转移,以及CO2πu/1πg/3σu-U 6d轨道间杂化而生成新的化学键.以形成3个C-U键和6个O-U键模式在穴位1和穴位2上发生吸附的CO2(H1-C3O6和H2-C3O6)的解离吸附能分别为3.15和3.13 eV,解离能垒分别为0.26和0.36 eV,预示着吸附CO2分于易于解离形成CO分子和O原子.  相似文献   

4.
The adsorption and dissociation of thiophene on the MoP(001), gamma-Mo(2)N(100), and Ni(2)P(001) surfaces have been computed by using the density functional theory method. It is found that thiophene adsorbs dissociatively on MoP(001), while nondissociatively on gamma-Mo(2)N(100) and Ni(2)P(001). On MoP(001), the dissociation of the C-S bonds is favored both thermodynamically and kinetically, while the break of the first C-S bond on gamma-Mo(2)N(100) has an energy barrier of 1.58 eV and is endothermic by 0.73 eV. On Ni(2)P(001) there are Ni(3)P(2)- and Ni(3)P-terminated surfaces. On the Ni(3)P(2)-terminated surface, the dissociation of the C-S bonds of adsorbed thiophene is endothermic, while it is exothermic on the Ni(3)P-terminated surface.  相似文献   

5.
用密度泛函理论的总能计算研究了金属铜(100)面的表面原子结构以及在不同覆盖度时氢原子的吸附状态. 研究结果表明, 在Cu(100)c(2×2)/H表面体系中, 氢原子吸附的位置是在空洞位置, 距最外层Cu原子层的距离为0.052 nm, 相应的Cu—H键长为0.189 nm, 并通过计算结构参数优化否定了其它的吸附位置模型. 总能计算得出Cu(100)c(2×2)/H表面的功函数为4.47 eV, 氢原子在这一体系的吸附能为2.37 eV(以孤立氢原子为能量参考点). 通过与衬底原子的杂化, 氢原子形成了具有二维特征的氢能带结构, 在费米能级以下约0.8 eV处出现的表面局域态是Cu(S)-H-Cu(S-1)型杂化的结果. 采用Cu(100)表面p(1×1)、p(2×2)和p(3×3)的三种氢吸附结构分别模拟1, 1/4, 1/9的原子单层覆盖度, 计算结果表明, 随着覆盖度的增加, 被吸附的氢原子之间的距离变短, 使得它们之间的静电排斥和静电能增大, 从而导致表面吸附能和吸附H原子与最外层Cu原子间垂直距离(ZH-Cu)逐渐减小. 在较低的覆盖度下, 氢原子对Cu(100)表面的影响主要表现为单个原子吸附作用的形式. 通过总能计算还排除了Cu(100)表面(根号2×2根号2)R45°-2H缺列再构吸附模型的可能性.  相似文献   

6.
Density functional theory method has been employed to investigate the adsorption of H2 molecule and H atom on α‐U(001) surface. There exist four initial sites [top (A), triangle‐center (B), long‐bridge (C), and short‐bridge (D)] for H2 and H atom adsorptions on α‐U(001) surface. The Eads (adsorption energy) values on the top sites of H2‐U(001) configurations are around ?0.666 eV, and H2 molecule has been elongated but not broken into H atoms. For the other three sites, the Eads values are around ?1.521 eV. The long‐bridge site is the most reactive site for H2 decomposing. For the H‐U(001) configurations, the Eads are around ?2.904 eV. Top site and short‐bridge site are the most reactive sites for the H atom react on the α‐U(001) surface. Our work reveals that the different reactive sites play discrepant effects on hydrogenation process. Geometric deformations, diffusion paths, and partial density of states of H2‐U(001) and H‐U(001) configurations have also been analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ~1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250–350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ~0.2–1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.  相似文献   

8.
非负载镍催化剂的2-乙基蒽醌加氢活性及其氢吸脱附性质   总被引:4,自引:0,他引:4  
 分别制备了金属镍粉、兰尼镍、Ni-B非晶态合金及镧掺杂的Ni-B非晶态合金(Ni-B-La)催化剂,研究了催化剂的氢吸附和脱附性质以及对2-乙基蒽醌加氢反应的催化性能. 结果表明,金属镍粉、兰尼镍和Ni-B催化剂表面均具有两种氢吸附位: 弱吸附位和强吸附位. Ni-B-La催化剂表面只有氢的强吸附位,其强吸附氢量与兰尼镍相当. 推测只有氢的强吸附位是2-乙基蒽醌加氢反应的活性中心,并且Ni-B-La催化剂上的强吸附氢较兰尼镍上的更活泼,因而Ni-B-La非晶态合金催化剂对加氢反应的催化活性高于兰尼镍.  相似文献   

9.
The sequential addition of H atoms to CO adsorbed on a siliceous edingtonite surface is studied with an embedded cluster approach, using density functional theory for the quantum mechanical (QM) cluster and a molecular force field for the molecular mechanical (MM) cluster. With this setup, calculated QM/MM adsorption energies are in agreement with previous calculations employing periodic boundary conditions. The catalytic effect of the siliceous edingtonite (100) surface on CO hydrogenation is assessed because of its relevance to astrochemistry. While adsorption of CO on a silanol group on the hydroxylated surface did not reduce the activation energy for the reaction with a H atom, a negatively charged defect on the surface is found to reduce the gas phase barriers for the hydrogenation of both CO and H2C=O. The embedded cluster approach is shown to be a useful and flexible tool for studying reactions on (semi-)ionic surfaces and specific defects thereon. The methodology presented here could easily be applied to study reactions on silica surfaces that are of relevance to other scientific areas, such as biotoxicity of silica dust and geochemistry.  相似文献   

10.
The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.  相似文献   

11.
Transition state analyses have been carried out within a density functional theory setting to explain and quantify the distinctly different ways in which hydrogen and methyl terminations serve to protect silicon surfaces from the earliest onset of oxidation. We find that oxidation occurs via direct dissociative adsorption, without any energy barrier, on Si(111) and reconstructed Si(001) that have been hydrogen terminated; oxidation initiates with a barrier of only 0.05 eV on unreconstructed Si(001). The commonly measured protection afforded by hydrogen is shown to derive from a coverage-dependent dissociation rate combined with barriers to the hopping of adsorbed oxygen atoms. Methyl termination, in contrast, offers an additional level of protection because oxygen must first undergo interactions with these ligands in a three-step process with significant energy barriers: adsorption of O(2) into a C-H bond to form a C-O-O-H intermediate; decomposition of C-O-O-H into C-O-H and C=O intermediates; and, finally, hopping of oxygen atoms from ligands to the substrate.  相似文献   

12.
Adsorption, desorption, and conversion of thiophene on H-ZSM5   总被引:3,自引:0,他引:3  
The dynamics and stoichiometry of thiophene adsorption and of rearrangements of thiophene-derived adsorbed species in O(2), He, H(2), and C(3)H(8) carriers were measured using chromatographic methods and mass spectrometry on H-ZSM5 and H-Y zeolites. Thiophene adsorption obeyed Langmuir isotherms on both zeolites. Adsorption uptakes were 1.7 and 2.8 thiophene/Al at 363 K on H-ZSM5 and H-Y zeolites, respectively, after removal of physisorbed thiophene. These stoichiometries differed for these two zeolite structures but did not depend on their Al content (Si/Al = 13-85). Adsorption from a thiophene-toluene mixture showed thiophene selectivities ( approximately 10) greater than expected from van der Waals interactions. These adsorption stoichiometries, without contributions from physisorption, and the color changes detected indicate that thiophene adsorption occurs concurrently with oligomerization on acidic OH groups and that oligomer size depends on spatial constraints within channels. Thiophene oligomers decompose at approximately 534 K during subsequent thermal treatment to form molecular thiophene with all carriers, leaving behind unsaturated thiophene-derived species with a 0.9-1.1 thiophene/Al stoichiometry, confirming the specificity of OH groups and the oligomeric nature of bound thiophene during adsorption at 363 K. With He, H(2), and C(3)H(8), residual thiophene-derived species desorb as stable fragments, such as H(2)S, ethene, propene, arenes, and heavier organosulfur compounds (methylthiophene and benzothiophene) during thermal treatment; they also form unsaturated organic deposits that cannot desorb without hydrogenation events. H(2) and C(3)H(8) remove larger amounts of adsorbed species as unreacted thiophene than He, suggesting that dehydrogenation reactions are inhibited or reversed by a hydrogen source. C(3)H(8) removes a larger fraction of thiophene-derived intermediates as hydrocarbons and organosulfur compounds than H(2) or He; thus, hydrogen atoms formed during C(3)H(8) dehydrogenation are more effective in the removal of unsaturated deposits than those formed from H(2). Thiophene-derived adsorbed species are completely removed only with O(2)-containing streams at 873 K, a process that fully recovers initial adsorption capacities. This study provides a rigorous assessment of the nature and specificity of thiophene adsorption processes on acidic OH groups and of the identity and removal pathways of adsorbed species in various reactive environments.  相似文献   

13.
An array of surface science measurements has revealed novel water adsorption behavior at the Fe(3)O(4)(001) surface. Following room temperature exposure to water, a low coverage of hydrogen atoms is observed, with no associated water hydroxyl group. Mild annealing of the hydrogenated surface leads to desorption of water via abstraction of surface oxygen atoms, leading to a reduction of the surface. These results point to an irreversible splitting of the water molecule. The observed phenomena are discussed in the context of recent DFT calculations (Mulakaluri, N.; Pentcheva, R.; Scheffler, M. J. Phys. Chem. C 2010, 114, 11148), which show that the Jahn-Teller distorted surface isolates adsorbed H in a geometry that could kinetically hinder recombinative desorption. In contrast, the adsorption geometry facilitates interaction between water hydroxyl species, which are concluded to leave the surface following a reactive desorption process, possibly via the creation of O(2).  相似文献   

14.
We applied periodic density-functional theory (DFT) to investigate the dehydrogenation of ethanol on a Rh/CeO2 (111) surface. Ethanol is calculated to have the greatest energy of adsorption when the oxygen atom of the molecule is adsorbed onto a Ce atom in the surface, relative to other surface atoms (Rh or O). Before forming a six-membered ring of an oxametallacyclic compound (Rh-CH2CH2O-Ce(a)), two hydrogen atoms from ethanol are first eliminated; the barriers for dissociation of the O-H and the beta-carbon (CH2-H) hydrogens are calculated to be 12.00 and 28.57 kcal/mol, respectively. The dehydrogenated H atom has the greatest adsorption energy (E(ads) = 101.59 kcal/mol) when it is adsorbed onto an oxygen atom of the surface. The dehydrogenation continues with the loss of two hydrogens from the alpha-carbon, forming an intermediate species Rh-CH2CO-Ce(a), for which the successive barriers are 34.26 and 40.84 kcal/mol. Scission of the C-C bond occurs at this stage with a dissociation barrier Ea = 49.54 kcal/mol, to form Rh-CH(2(a)) + 4H(a) + CO(g). At high temperatures, these adsorbates desorb to yield the final products CH(4(g)), H(2(g)), and CO(g).  相似文献   

15.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

16.
The adsorption and dissociation of hydrogen on stepped surface (511) of nickel are studied with the embedded-atom model (EAM) method. The adsorption energy, the length of the adsorption bond and the adsorption height for a single hydrogen atom are calculated. Three kinds of stable sites are found for hydrogen adsorption. There are the double-fold bridge site B on the step edge, the three-fold hollow site H3′ on the step surface and the four-fold hollow sites H1 and H2 on the terrace surface. Compared with a hydrogen atom adsorbed on low-index (001) surface, there are two other adsorption sites near the step: the two-fold bridge site B on the step edge and the three-fold hollow site H3′ on the step surface. At the same time, the absorbability of the hydrogen atom at the site H1 is intensified. The results show that hydrogen adsorption on Ni (511) is affected by the existence of the step. The active barriers, adsorption energy and corresponding bond length for dissociation of a hydrogen molecule on the stepped surface are presented. The results show that the dissociation is easier at the bottom of the step. It is shown that the steps are the active sites for hydrogen adsorption and dissociation.  相似文献   

17.
Lauhon LJ  Ho W 《Faraday discussions》2000,(117):249-55; discussion 257-75
A scanning tunneling microscope (STM) operating at 9 K in ultrahigh vacuum was used to initiate a bimolecular reaction between isolated hydrogen sulfide and dicarbon molecules on the Cu(001) surface. The reaction products ethynyl (CCH) and sulfhydryl (SH) were identified by inelastic electron tunneling spectroscopy (STM-IETS) and by sequentially removing hydrogen atoms from an H2S molecule using energetic tunneling electrons. For comparison, the thermal diffusion and reaction of H2S and CC at 45 K and H2O and CC at 9 K were also observed.  相似文献   

18.
采用unity bond index-quadratic exponential potential(UBI-QEP)方法, 以Co(0001) 单晶为模型催化剂, 对Fischer-Tropsch(F-T)合成的三种可能反应机理(表面碳化物机理、烯醇机理和CO插入机理)进行了全面的能学分析. 计算结果表明, 通过表面碳化物机理生成烃类产物从能学角度看较为合理, 其中COads表面解离和Cads加氢具有较高的活化能垒, 可能是整个F-T反应序列中的慢步骤; 通过CH2,ads插入金属-烷基键实现链增长的活化能垒最低, 是能量上有利的链增长方式; 在Co(0001)晶面上烷基经β-H消除生成烯烃的活化能垒低于加氢生成烷烃, 而通过CO插入机理生成的有机含氧化合物的二次反应能垒较低, 从而导致其在Co催化剂上的低选择性. 此外, 与Fe/W(110)相比, Co金属上的CHx,ads加氢以及CH2,ads插入的活化能垒较低, 从而解释了Co催化剂上甲烷选择性较高和倾向于生成重质烃类产物的特性.  相似文献   

19.
The chemistry of oxygen, hydrogen, water, and other species containing both oxygen and hydrogen atoms on the anatase TiO2 (001) surface is investigated by DFT. The adsorption energy of atoms and radicals depends appreciably on the position and mode of adsorption, and on the coverage. Molecular hydrogen and oxygen interact weakly with the clean surface. However, H2O dissociates spontaneously to give two nonidentical hydroxyl groups, and this provides a model for hydroxylation of TiO2 surfaces by water. The mobility of the hydroxyl groups created by water splitting is initially impeded by a diffusion barrier close to 1 eV. The O2 adsorption energy increases significantly in the presence of H atoms. Hydroperoxy (OOH) formation is feasible if at least two H atoms are present in the direct vicinity of O2. In the adsorbed OOH, the O? O bond is considerably lengthened and thus weakened.  相似文献   

20.
X-ray photoelectron spectroscopy and first-principles density-functional calculations were used to study the interaction of thiophene, H(2)S, and S(2) with Ni(2)P(001), alpha-Mo(2)C(001), and polycrystalline MoC. In general, the reactivity of the surfaces increases following the sequence MoC < Ni(2)P(001) < alpha-Mo(2)C(001). At 300 K, thiophene does not adsorb on MoC. In contrast, Ni(2)P(001) and alpha-Mo(2)C(001) can dissociate the molecule easily. The key to establish a catalytic cycle for desulfurization is in the removal of the decomposition products of thiophene (C(x)H(y) fragments and S) from these surfaces. Our experimental and theoretical studies indicate that the rate-determining step in a hydrodesulfurization (HDS) process is the transformation of adsorbed sulfur into gaseous H(2)S. Ni(2)P is a better catalyst for HDS than Mo(2)C or MoC. The P sites in the phosphide play a complex and important role. First, the formation of Ni-P bonds produces a weak "ligand effect" (minor stabilization of the Ni 3d levels and a small Ni --> P charge transfer) that allows a high activity for the dissociation of thiophene and molecular hydrogen. Second, the number of active Ni sites present in the surface decreases due to an "ensemble effect" of P, which prevents the system from deactivation induced by high coverages of strongly bound S. Third, the P sites are not simple spectators and provide moderate bonding to the products of the decomposition of thiophene and the H adatoms necessary for hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号