首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
相对于异戊二烯和丁二烯传统二烯烃,新型间戊二烯单体可以通过阴离子共聚合实现特殊序列结构共聚物,如交替共聚物。本文以间戊二烯、苯乙烯和对叔丁基苯乙烯为共聚单体,通过丁基锂引发聚合合成系列二元及三元共聚物,重点考察了共聚动力学和共聚物的微观结构。实验结果表明:(1)聚合动力学显示共聚合符合经典一级反应特征,共聚单体可以转化完全;(2)核磁氢谱在线分析表明共聚单体等摩尔消耗,核磁氢谱和碳谱证明了二元交替共聚结构;(3)二元及三元共聚均具有明显的活性可控聚合特征,分子量与理论值高度吻合,分子量分布D均小于1.20;(4)示差扫描量热(DSC)结果显示交替共聚物是一类特殊的半结晶聚合物,玻璃化转变温度Tg可以通过调控共聚单体比例微调,Tm在100~120℃范围;(5)基于间戊二烯特殊的二元交替共聚,推测了可能的聚合机理。  相似文献   

2.
以苯乙烯(St)、含香豆素光敏单体(VM)、丙烯酸(AA)为单体,偶氮二异丁腈(AIBN)为引发剂引发自由基共聚,合成了双亲性光敏无规共聚物P(St-co-VM-co-AA)(简称PSVA);又以St及甲基丙烯酸二甲胺乙酯(DMAEMA)为单体,AIBN为引发剂引发自由基共聚,制得二元双亲性无规共聚物P(St-co-D...  相似文献   

3.
吕绪良  王广银  王可佳  荣先辉  贾其 《化学学报》2011,69(24):2995-3001
研究了聚丙烯酸酯侧基上引入三氟乙烯基芳基醚结构单元的方法. 首先, 合成了含有三氟乙烯基芳基醚侧基的丙烯酸酯单体, 然后通过原子转移自由基聚合实现了该单体的均聚和无规共聚, 得到了含有三氟乙烯基芳基醚侧基的聚丙烯酸酯聚合物, 聚合物的分子量分布较窄. 通过控制共聚投料比, 可以得到具有不同含量三氟乙烯基芳基醚侧基的无规共聚物.  相似文献   

4.
PLA大分子单体接枝NVP共聚物的合成与性能   总被引:2,自引:0,他引:2  
制备了末端为双键的功能化聚乳酸大分子单体(PLA-HEMA),并以此大分子单体与N-乙烯基吡咯烷酮(NVP)进行自由基溶液共聚,合成了具有亲水性PVP-PHEMA主链和疏水性PLA支链的接枝共聚物。用FT-IR1、H-NMR、GPC、DSC、表面接触角测定研究了共聚物的结构与性能。结果表明:共聚物为非晶聚合物;NVP的摩尔投料量对共聚物的性能有显著影响,随NVP投料量增大,共聚物的分子量有所下降,玻璃化转变温度(Tg)增大;由于亲水性PVP和PHEMA链段的引入,共聚物的亲水性优于相应的线型聚乳酸材料。  相似文献   

5.
为了深入理解乙烯基二联苯单体自由基聚合过程中的手性传递,进行了手性单体(+)-2-[(S)-异丁氧羰基-5-(4′-己氧基苯基)苯乙烯、非手性单体2-丁氧羰基-5-(4′-己氧基苯基)苯乙烯的均聚反应及它们二者的共聚反应,探讨了聚合温度和溶剂性质对手性单体均聚物旋光活性、手性单体含量对共聚物旋光活性以及聚合反应溶剂的超分子手性对共聚物旋光活性的影响.研究发现,降低聚合温度、采用液晶性反应介质有利于得到旋光度大的聚合物;少量手性单体的引入即可诱导共聚物形成某一方向占优的螺旋构象,比旋光度随手性单体的含量增加呈线性增长;在胆甾相液晶中制备的非手性单体聚合物不具有光学活性.这些结果表明,该类乙烯基二联苯聚合物具有动态螺旋构象,其光学活性主要依赖于主链的立构规整度和侧基不对称原子的手性.  相似文献   

6.
基于活性阴离子聚合方法,通过改变单体投料比例,成功制备了3种二乙烯基苯(DVB)偶联的星形结构苯乙烯-二烯烃共聚物S-IBS,其平均偶联臂数(AGN)达到7.0以上,偶联效率(CE)达到93%。进一步加氢得到氢化苯乙烯-二烯烃(HSD)型共聚物—氢化星形苯乙烯-异戊二烯-丁二烯(HS-IBS),氢化效率达到95%以上,同时对氢化前后的聚合物进行表征以及组成含量计算。将氢化后星形聚合物HS-IBS合理简化视为乙烯-丙烯-苯乙烯(E-P-St)三元共聚物后,结合~(13)C以及~1H-NMR进行组成含量计算。氢化后组成计算值与实际投料组成以及氢化前核磁计算值误差在1%以内,表明将氢化后聚合物简化视为E-P-St共聚物,进而推算组成的模拟计算方法具有非常好的精确度。这一方法为采用活性阴离子聚合-偶联-氢化的HSD类黏指剂产品剖析建立了可靠的分析和计算方法,能够准确地推断其组成结构,进而分析其合成方法,也便于国内研发人员对这一类产品的结构组成进行有效的解析。  相似文献   

7.
高于临界聚合反应温度时,α-甲基苯乙烯(AMS)单体和其聚合物处于聚合-解聚平衡.基于AMS聚合物在受热时可裂解生成大分子链自由基的特性,提出了含AMS结构单元的共聚物是一种"活"的,可作为大分子自由基引发剂的概念,并通过实验对AMS共聚物的引发性能和应用进行了研究.首先,合成了AMS与(甲基)丙烯酸酯类单体、丙烯酸、苯乙烯和马来酸酐等的共聚物.然后以上述共聚物为大分子引发剂,在90℃引发(甲基)丙烯酸酯类单体和苯乙烯等的本体聚合、溶液聚合和乳液聚合,得到了嵌段共聚物.用ESR谱证明了AMS的共聚物在加热时能裂解生成以碳原子为中心的大分子链自由基.此外,在聚合物的熔融共混中,AMS分解产生的大分子链自由基通过偶合反应形成接枝链,原位生成相容剂.AMS共聚物还可以对碳纳米管及无机粒子进行表面原位接枝改性.AMS共聚物是一类无小分子残留的绿色自由基引发剂,可以用于低成本制备两嵌段共聚物,也可以用于聚合物的熔融共混增容.  相似文献   

8.
两亲性含糖三嵌段共聚物的合成与自组装研究   总被引:1,自引:0,他引:1  
以二(2-溴异丁酸)4,4′-联苯酯(BiBBP)为引发剂,采用顺序加料的方法,用原子转移自由基聚合法(ATRP)合成了一系列窄分子量分布的甲基丙烯酸甲酯(MMA)和6-O-甲基丙烯酰基-1,2;3,4-双-O-亚异丙基-α-D-吡喃半乳糖苷(MAIPGal)的三嵌段共聚物.用GPC和1H-NMR表征了聚合物的相对分子量和链段组成.结果表明,通过改变投料顺序可以合成ABA和BAB型2种三嵌段共聚物,改变投料比和控制单体的转化率可以调控聚合物的链段组成.聚合物脱保护后得到两亲性含糖共聚物.用TEM考察了聚合物在水溶液中的自组装行为,表明具有不同链段组成的共聚物可以形成不同形态的聚集体,含糖段组成高的聚合物易于形成大尺寸的胶团,含糖段组成低的聚合物易于形成结构清晰的囊泡、胶束,其中,含糖段在两边的BAB型共聚物易于形成囊泡,含糖段在中央的ABA型共聚物易于形成胶束.  相似文献   

9.
共聚合反应     
(一) 如果把二种烯类单体放在一起聚合,而得到的聚合物并不是各个单体各自聚合的混合物,而是包含着二种单体链节的新型聚合物,这种聚合物叫做共聚物,得到共聚物的聚合反应叫做共聚合反应。因为聚合物的物理及机械性能决定于长链中单体链节的性能,相对数量以及排列方式,所以共聚合反应便具有非常重要的工业意义,因为可以借此改进聚合物性能来随应实际应用的需要。丁二烯用苯乙烯共聚来改进它的抗张强度,用丙烯腈的共聚来改进它的耐油性,这是大家所熟悉的,再如:(1)聚苯乙烯的软化点在80°左右,如果与反丁烯二腈共聚  相似文献   

10.
将引发剂偶氮二异丁腈(AIBN)、共聚单体苯乙烯(St)和马来酸酐(MA)溶解于甲苯中,采用沉淀聚合法合成苯乙烯-马来酸酐共聚物(SMA).分别研究了反应温度、引发剂用量、反应时间、单体配比和单体浓度对聚合物得率和酸酐含量的影响.采用正交实验确定最优反应条件为:单体浓度20%,单体物质的量比为1∶1,引发剂用量为0.60%,反应温度为86℃,反应时间2h,产物得率为86.86%,酸酐含量为50.28%.并利用傅里叶变换红外光谱(FTIR)、核磁共振碳谱(~(13)C NMR)、凝胶渗透色谱(GPC)和热分析法分别研究聚合物的分子结构、相对分子质量及相对分子质量分布和热稳定性.结果表明产物是苯乙烯-马来酸酐交替共聚物,相对分子质量分布较窄,具有良好的热稳定性.  相似文献   

11.
A block copolymer of methyl methacrylate with poly(ethylene oxide) was synthesized by initiation with poly(ethylene oxide) radicals formed by high-speed stirring. The effects of the concentration of the monomer, the concentration of the polymer, the degree of polymerization, the rotation speed, and the solvent on the rate of copolymerization were studied. It was found that the rate of copolymerization was proportional to the concentration of the monomer and to the square root of the rate of scission of the polymer chain. The block copolymerization of methyl methacrylate monomer and styrene monomer (1 : 1 mole ratio) with poly(ethylene oxide) radicals was also carried out by the same method and it was found that the block copolymerization was a radical one.  相似文献   

12.
The full moment equations and equations using pseudo-kinetic rate constants for binary copolymerization with chain transfer to polymer in the context of the terminal model have been developed and solved numerically for a batch reactor operating over a wide range of conditions. Calculated number- and weight-average molecular weights (M̄n and M̄w) were compared with those found using the pseudo-kinetic rate constant method (PKRCM). The results show that the weight-average molecular weights calculated using PKRCM are in agreement with those found using the method of full moments for binary copolymerization when polymeric radical fractions φ1˙ and φ2˙ of type 1 and 2 (radical centers are on monomer types 1 and 2 for a binary copolymerization) are calculated accounting for chain transfer to small molecules and polymer reactions in addition to propagation reactions. Errors in calculating M̄w using PKRCM are not always negligible when polymer radical fractions are calculated neglecting chain transfer to small molecules and polymer. In this case, the relative error in M̄w by PKRCM increases with increase in monomer conversion, extent of copolymer compositional drift and chain transfer to polymer rates. The errors in calculating M̄w, however, vanish over the entire monomer conversion range for all polymerization conditions when chain transfer reactions are properly taken into account. It is theoretically proven that the pseudo-kinetic rate constant for chain transfer to polymer is valid for copolymerizations. One can therefore conclude that the pseudo-kinetic rate constant method is a valid method for molecular weight modelling for binary and multicomponent polymerizations.  相似文献   

13.
丁绪银  寸菲  谢美然 《大学化学》2020,35(1):105-110
利用Matrix Laboratory(Matlab)软件编辑Plot函数,输入共聚单体的竞聚率,然后运行可以得到二元共聚物组成双曲线。通过共聚双曲线,可以同时观察两种单体的共聚行为,使隐含的第二单体与其聚合物组成之间的变化规律具象化,丰富了共聚物组成曲线的学习内容,有助于加深对共聚合反应规律的认识。  相似文献   

14.
Chain transfer reactions widely exist in the free radical polymerization and controlled radical polymerization, which can significantly influence polymer molecular weight and molecular weight distribution. In this work, the chain transfer reactions in modeling the reversible addition–fragmentation transfer (RAFT) solution copolymerization are included and the effects of chain transfer rate constant, monomer concentration, and comonomer ratio on the polymerization kinetics and polymer molecular weight development are investigated. The model is verified with the experimental RAFT solution copolymerization of styrene and butyl acrylate, with good agreements achieved. This work has demonstrated that the chain transfer reactions to monomer and solvent can have significant impacts on the number‐average molecular weight (Mn) and dispersity (Ð).  相似文献   

15.
The kinetics of the homogeneous free radical polymerization of potassium p-styrenesulphonate and sodium p-styrenesulphonate (SSS) in water-salt, water-dioxane, water-dimethyl sulphoxide (DMSO), DMSO—dioxane mixtures and copolymerization of SSS with acrylamide in water-salt and water-DMSO mixtures have been investigated. The overall rate of the process, the kinetic orders with respect to monomer and initiator, overall activation energy and also the properties of the resulting polymers (molecular weight, copolymer composition and compositional inhomogeneity) depend on the nature of the reaction medium. It is mainly connected with the influence of ionic strength (due to varying ionogenic monomer concentration, addition of salts and also the change of the conversion degree) and with the influence of the polarity of solvent on the rate constants for propagation and termination. The chemical and physical characteristic of the reaction mainly influence parameters of the electrostatic interactions in the system “macroradical-counterions-anions of monomer”. This leads to conformational variation of polymer chains and influences the reactivities of growing macroradicals and ionogenic monomers in polymerization and copolymerization. Data on conductivity and viscometric measurements confirmed the dependence of the conformation of polymer and copolymer macromolecules upon the composition of the medium.  相似文献   

16.
The copolymerization of ethylene with maleic anhydride was carried out with γ-radiation and a radical initiator, i.e., 2,2′-azobisisobutyronitrile and diisopropyl peroxydicarbonate under pressure at various reaction conditions. The homopolymerization of neither monomer was observed in this system. In the γ-ray-initiated copolymerization the G value (polymerized monomer molecules per 100 e.v.) was shown to be between 103 and 104. It was found that the dose rate exponent of the rate is approximately unity, and the rate is proportional to the amount of ethylene monomer. Apparent activation energies of 1.8 and 27.5 kcal./mole were obtained for γ-ray-initiated and AIBN-initiated copolymerization, respectively. Since the composition of copolymer is independent of monomer molar ratio and the molar ratio of ethylene to maleic anhydride in the polymer is approximately unity, the monomer reactivity ratios were obtained as rE ? 0 and rM ? 0 for γ-ray-initiated polymerization at 40°C. Alternating copolymerization was, therefore, concluded to occur. Infrared analysis of the copolymer is almost consistent with this. The copolymer in the solid state is amorphous. It is soluble in water, cyclohexane, and dimethylformamide and insoluble in lower alcohols, ether, and aromatic hydrocarbons. The aqueous solution of polymer gave a strong acid.  相似文献   

17.
A mathematical model is presented to describe the monomer transport between monomer droplets, aqueous phase, and polymer particles during the course of an emulsion polymerization. The model was used to investigate the role of the cosurfactant (hexadecane) in the miniemulsion copolymerization of 50:50 molar ratio vinyl acetate-butyl acrylate monomer mixture, as well as the effect of the different components and process variables on the rate of copolymerization, monomer distribution between phases, and composition of the copolymer.  相似文献   

18.
In the radiation-induced emulsion copolymerization of tetrafluoroethylene with propylene, the dose rate dependence, the effect of emulsifier concentration, and the effect of monomer composition were studied. The rate of polymerization was proportional to the 0.90 power of the dose rate and the 0.26 power of the emulsifier concentration. The degree of polymerization was independent of the dose rate and the emulsifier concentration. Both the rate of polymerization and the degree of polymerization increased with tetrafluoroethylene content in the monomer mixture. The resulting copolymer was an alternating polymer over a wide range of monomer composition. It was concluded from the dose rate dependence of the rate of polymerization that the emulsion copolymerization is mainly terminated by degradative chain transfer of the propagating radical to propylene.  相似文献   

19.
Three basic conditions for preparation of alternating copolymer with narrow molecular weight distribution were derived from the element kinetic equations of binary radical copolymerization. Using maleimide (MI) and atropie acid (ATA) as model monomer pairs and dioxane as the solvent the alternating copolymer with molecular weight distribution in the range of 1.09--1.20 was prepared successfully by charger transfer complex (CTC) mechanism in the presence of benzoyl peroxide at 85℃. The monomer reactivity ratioes r_1(MI)=0.05±0.01 and r_2(ATA)=0.03±0.02 were measured. The alternating eopolymerization was carried out through formation of a contact-type CTG and then alternating addition of MI and ATA monomers. The molecular weight of the copolymers is nearly independent of the feed ratio in a large range and the polymerization rate dropped with an increase in ATA in feed ratio.  相似文献   

20.
A novel dispersion copolymerization of maleic anhydride (MAn) and vinyl acetate (VAc) without adding stabilizer is developed, which gives uniform copolymer microspheres with tunable sizes. Some principal factors affecting the microspheres, such as reaction time, monomer concentration and feed ratio, reaction media, and cosolvent, were investigated. It was found that the stabilizer‐free dispersion copolymerization of MAn and VAc is a rapid process, and the particle size grows in accordance with the evolution of polymerization. The chemical composition of the copolymer microspheres was characterized by FT‐IR and 13C NMR spectroscopies. Over a wide range of monomer concentrations, the microspheres can always be formed and stably dispersed, with uniform sizes ranging from 180 nm to 740 nm. The yield of copolymer microspheres reaches a maximum at 1:1 feed ratio of MAn to VAc, owing to the alternating copolymerization between the binary monomers by a known charge‐transfer‐complex mechanism. However, the diameter of microspheres drastically increases when MAn content is enhanced. Only some specific alkyl ester solvents, such as n‐butyl acetate, isobutyl acetate, n‐amyl acetate, are desirably fit for this unique stabilizer‐free dispersion polymerization. Furthermore, we found that when some acetone is added as a cosolvent, the copolymer microspheres can still be formed, with much larger diameters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3760–3770, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号