首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
High purity molybdenum was implanted by C ion in a metal vapour vacuum arc (MEVVA) implanter. The influence of implantation parameters was studied by varying ion fluence and ion current density. The samples were implanted by 45 keV C ion with fluences from 1×1015 to 1×1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and nanoindenter. Different morphologies were observed on the surfaces of the as-implanted samples due to irradiation damage, and clearly related to implantation parameters. XRD spectra confirm formation of β-Mo2C with ion fluences equal to or larger than 1×1016 ions/cm2, and formation of -Mo2C with ion fluence of 1×1018 ions/cm2. The maximum nanohardness and maximum modulus of the as-implanted samples increased gradually with increasing ion fluence, and reached the corresponding maximum values with ion fluence of 1×1018 ions/cm2. The experimental results suggest that the structure and properties of the as-implanted Mo samples exhibited strong dependence on implantation parameters.  相似文献   

2.
Y. B. Zhao  R. Gomer 《Surface science》1991,250(1-3):81-89
The electron impact behavior of CO adsorbed on Pd1/W(110) was investigated. The desorption products observed were neutral CO, CO+, and O+. After massive electron impact residual carbon, C/W = 0.15, but not oxygen was also found, suggesting that energetic neutral O, not detected in a mass analyzer must also have been formed. Formation of β-CO, i.e., dissociated CO with C and O on the surface was not seen. The total disappearance cross section varies only slightly with coverage, ranging from 9 × 10 −18 cm2 at low to 5 × 10−18 cm2 at saturation (CO/W = 0.75). The cross section for CO+ formation varies from 4 × 10−22 cm2 at satura to 2 × 10−21 cm2 at low coverage. That for O+ formation is 1.4 × 10−22 cm2 at saturation and 2 × 10−21 cm2 Threshold energies are similar to those found previously [J.C. Lin and R. Gomer, Surf. Sci. 218 (1989) 406] for CO/W(110) and CO/Cu1/W(110) which suggests similar mechanisms for product formation, with the exception of β-CO on clean W(110). It is argued that the absence or presence of β-CO in ESD hinges on its formation or absence in thermal desorption, since electron impact is likely to present the surface with vibrationally and rotationally activated CO in all cases; β-CO formation only occurs on surfaces which can dissociate such CO. It was also found that ESD of CO led to a work function increase of the remaining Pd1/W(110) surface of 500 meV, which could be annealed out only at 900 K. This is attributed to surface roughness, caused by recoil momentum of energetic desorbing entities.  相似文献   

3.
利用0.97 GeV的209Bi离子辐照二硫化钼(MoS2)晶体,辐照注量范围为1×1010~1×1012 ions/cm2,结合原子力显微镜(AFM)观测和Raman光谱分析研究了快重离子辐照对MoS2热导率的影响。实验结果显示,快重离子辐照在MoS2中产生了潜径迹,较高激光功率下的Raman测试使样品局部温度升高,导致E1/2gA1g峰随注量增加向低波数方向移动,且峰形展宽。引入了通过改变激光功率测量Raman光谱得到MoS2热导率的计算方法,获得了不同辐照注量下MoS2的热导率的定量分析结果,随注量增加,热导率不断降低,从未辐照样品的563 W/mK下降到1×1012 ions/cm2辐照时的132 W/mK。Molybdenum disulphide (MoS2) was irradiated by 0.97 GeV 209Bi ions with the fluence of 1×1010 to 1×1012 ions/cm2. The irradiation effect on the thermal conductivity of MoS2 was analyzed by atomic force microscope (AFM) and Raman spectroscopy. The experimental results show that hillock-like latent tracks are observed on irradiated MoS2 by AFM. The measurement of MoS2 by Raman spectrometer with high laser power results in the increase of local temperature of MoS2, which cause the downshift of peaks position and broadening of E1/2g and A1g peak. Furthermore, according to Raman spectra measured at different laser power, thermal conductivity of MoS2 before and after irradiation was calculated, which show that the thermal conductivity of MoS2 decreases with increasing fluence, from 563 to 132 W/mK for pristine and 1×1012 ions/cm2 irradiated MoS2, respectively.  相似文献   

4.
Cross sections for absorption from excited vibrational levels of the ground X3Σ-g state of molecular oxygen to the repulsive 13Πu state are given. The potential energy curve for the 13Πu state of O2 is constructed to be consistent with predissociation data for the B3Σ-u state and with recent ab initio calculations. In the photon wavelength range of 200–320 nm the cross sections are smoothly oscillatory and in no case larger than 1 × 10-21 cm2. In the region of the Schumann-Runge bands the cross sections are of order 0.4 × 10-21 cm2.  相似文献   

5.
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to study the phase, composition and chemical states of elements at the tungsten surface. The measurement results indicate that nitrogen-containing phase of tungsten were formed by nitrogen ion implantation (energy 40 keV, implantation doses of 4×1017, 8×1017 and 1.6×1018 ions/cm2). The formation of the Wx(O,N) and WN in the surface layer occurred as a result of nitrogen ion irradiation. A decrease in concentration of Wx(O,N) is observed with increasing N+ while that WN increases. Due to residual oxygen in the chamber WO3 still exists at the surface of the specimen.  相似文献   

6.
The electronic structure, surface and relaxation energies, and the electric field gradient for the unreconstructed Au(001) surface were calculated by means of the ab-initio all-electron full-potential linearized augmented plane wave slab method. The valence states were calculated within the standard semi-relativistic approach whereas the core states are treated in a fully relativistic way. The Au(001) surface was modelled by free slabs of 5, 7, and 9 layers. From the 9-layer calculation a work function of 5.39 eV was obtained. For the surface energy a value of 1.30 J/m2 for the unrelaxed geometry was derived from the total energies of the 7- and the 9-layer slabs. From total energy minimization of the 7-layer slab, a negative, inward relaxation of −2.6% and a relaxation energy of 14.3 × 10−3 J/m2 were derived. To discuss a mechanism of reconstruction, particular surface states were analyzed in detail in terms of the band structure, layer-dependent density of states and the charge density distribution. Differences of surface and central-layer charge densities show a gain of charge in z-direction localised below and also, to a smaller extent, above the surface atoms. We find a very small gain of delocalised charge in the surface plane between the nearest neighbour positions at the expense of more localised s-d hybridised states. The electric field gradient component Φzz was obtained in a two energy window calculation for which the Au5p states were also treated as band states. The resulting Φzz values are −16.50 × 1017 V/cm2 surface layer, and −3.3 × 1017 V/cm2 for the subsurface layer.  相似文献   

7.
We report on the BCC to FCC/HCP structural transformation of Co70Fe30 alloy produced by room temperature ion irradiation of Co70Fe30/Cu discontinuous multilayers. The structural changes were analyzed by X-ray diffraction and X-ray absorption spectroscopy. For this study, two different samples were examined, one irradiated with 50 keV He+ and another with 600 keV Kr+ with doses of 1×1017 and 3×1015 ions/cm2, respectively. No substantial change is observed after He+ irradiation, while after Kr+ irradiation an unexpected structural transition from BCC to FCC/HCP closed packed of the Co70Fe30 alloy was found.  相似文献   

8.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

9.
Interfaces prepared by vapor deposition of Sn onto Pt(100) surfaces have been examined using the following techniques: Auger electron and X-ray photoelectron spectroscopy (AES and XPS), low-energy electron diffraction (LEED), and low-energy ion surface scattering (LEISS) with Ne+ ions. Tin deposition was conducted at 320 and 600 K, and the surface composition and order was examined as a function of further annealing to 1200 K. The AES uptake plots (signal versus deposition time) indicate that the Sn growth mode can be described by a layer-by-layer process only up to one adayer at 320 K. Some evidence of 3D growth is inferred from LEED and LEISS data for higher Sn coverages. For deposition at 600 K, AES data indicate significant interdiffusion and surface alloy formation. LEED observations (recorded at a substrate temperature of 320 K) show that the characteristic hexagonal Pt(100) reconstruction disappears with Sn exposures of 4.6 × 1014 atoms cm2Sn = 0.35 monolayer (ML)). Further Sn deposition results in a c(2 × 2) LEED pattern starting at a coverage of slightly above 0.5 ML. The c(2 × 2) LEED pattern becomes progressively more diffuse with increasing Sn exposure with eventual loss of all LEED features above 2.2 ML. Annealing experiments with various precoverages of Sn on Pt(100) are also described by AES, LEED, and LEISS results. For specific Sn precoverages and annealing conditions, c(2 × 2), p(3√2 × √2)R45°, and a combination of the two LEED patterns are observed. These ordered LEED patterns are suggested to arise from ordered PtSn surface alloys. In addition, the chemisorption of CO and O2 at the ordered annealed Sn/Pt(100) surfaces was also examined using thermal desorption mass spectroscopy (TDMS), AES, and LEED.  相似文献   

10.
The betaspectra of 12B and 12N have been measured with a NaI crystal as spectrometer. Assuming a shape correction factor 1 + aW + bW2 and b = 1.106 × 10−4 MeV−2, b+ = −1.397 × 10−4 MeV−2, the spectra yield a = (+0.91 ± 0.11) × 10−2 MeV−1 and a+ = (−0.07 ± 0.09) × 10−2 MeV. the aa+ = (+0.98 ± 0.09) × 10−2 MeV−1 is in agreement with the weak magnetism prediction.  相似文献   

11.
We have made the XAFS measurements at the Cr–K-edge on natural Indian ruby single crystals (corundum) and its two irradiated samples with fluence 1×1012 Ni6+ and 5×1012 Ni6+ ions/cm2. Irradiated samples show interesting changes in their physical appearance. XANES measurements show progressive decrease in Δoct value on increase of Ni fluence in irradiated samples. EXAFS measurements on these samples show decrease in Cr–O distance on increase of Ni fluence. Lowering of Δoct value is correlated with the increase of Cr–O distance.  相似文献   

12.
Ion-implantation-induced structural modifications in Y1Ba2Cu3O7−δ superconductor are examined by a grazing angle X- ray diffraction technique. By employing a range of grazing angles from 0.3° to 10° it is shown that 100 KeV Ar+ inplantation of the superconductor leads to amorphization as well as modification of grain size and orientation at dose values lower than 1016 ions/ cm2. At the dose of 5 × 1016 ions/ cm2 the X-ray diffraction intensity is a factor of 6 less as compared to the original pellet, though the lines themselves are sharp. This shows coexistence of perovskite grains and amorphous matrix.  相似文献   

13.
To find a model that describes the gas diffusion on irradiated polymers (Makrofol KG polycarbonate) the diffusion constants have been measured with argon as diffusion gas. The polymers were irradiated with uranium, gold and lead ions of about 10 MeV/u and ion fluences between 1×1010 and 4×1011 ions/cm2. The ion irradiated probes show two quite different dependencies of the diffusion constant on the ion energy loss. These effects are strongly related to the fluence of the irradiation. In case of low ion fluences, the diffusion constant is up to 8 times higher than that of pristine material. In the probes with high ion fluences we observe a decrease of diffusion constant to half the value of the pristine material. To understand the dependence of the diffusion constant on ion fluences we apply a model of compacting. This model describes the compacting ability of shockwaves arising from latent tracks. A track formation model is suggested. When an ion penetrates the foil it creates shockwaves around its path. These shockwaves put compacting forces on earlier created latent tracks in the same foil.  相似文献   

14.
Top-contact thin film transistors with ZnO as the channel layer and thermally grown SiO2 as the gate dielectric were fabricated by using rf sputtering. The performances of ZnO-TFTs with different thicknesses of the active layer were investigated and the optimized condition was obtained. With the active layer thickness from 25 to 70 nm, the leakage current of devices increased from 10−10 to 10−8 A, and the on/off ratio decreased from 1.2×107 to 2×104. Atomic force microscope research indicated that with the thickness increased, the surface morphology of the active layer improved noticeably at first and then deteriorated. The 25-nm-thick ZnO TFT had the best surface morphology, and showed the best performance with a field effect mobility of 5.1 cm2/V S, on/off ratio of 1.2×107 and threshold voltage of 20 V. This indicates that the surface properties of the channel layer have crucial affects on the performances of ZnO-TFTs.  相似文献   

15.
The topography and size of damage on the surface of HOPG (Highly Oriented Pyrolitic Graphite) bombarded by high fluence (1×1016 ions/cm2) of H+ ions were observed and studied. In this work, 457 STM images of each one with 9×9 nm2 area were obtained. From 163 of these pictures visible damage was found. In these 163 STM images the diameter of most damage is from 0.2 to 0.8 nm. In this study the number density of visible damage is much less than the ion fluence. The probability of damage is only about 1.8×10−4. The possible mechanism of damage formation is also analyzed and discussed.  相似文献   

16.
The irradiation of the high Tc superconducting material YBaCuO has been carried out by using 200 keV proton, and 400 keV and 8 MeV electron beams. The temperature of zero resistance increases from 86.7 to 89.8 K with proton implantation while 8 MeV electron irradiation reduces the zero resistance temperature by 3 K with an irradiation dose of 2.25×1014e-/cm2. However, wich an irradiation dose of 1.35×1015e-/cm2 the 8 MeV electron beam can make the superconductor become insulating. The in situ examination of a high resolution transmission electron microscope has proved that the amorphous region in the system has ordered arrangement whereas the crystalline region turns disordered under 400 keV electron irradiation with very high doses up to 1026 e-/cm2. The experiments demostrate that proton and electron irradiations exhibit quite different effects both in its structure and property.  相似文献   

17.
We report for the first time the spectroscopy and the laser operation of GdAl3(BO3)4: Nd3+ (NGAB) near 1338 nm corresponding to the 4F3/24I13/2 channel. Their features have been found favorable for self-frequency doubling in order to generate a red radiation at 669 nm and more generally for self-frequency conversions. The emission cross-section in σ-polarization was estimated to be 5.5×10−20 cm2. We demonstrated self-frequency doubling despite of non-optimal experimental conditions.  相似文献   

18.
Optically polished crystalline quartz samples were implanted at room temperature by 2.6 MeV Ni+ ions with a dose of 9×1014 ions/cm2 and 2.0 MeV He+ ions with a dose of 1.5×1016 ions/cm2, respectively. A comparison of the MeV Ni+ ion-implanted planar waveguide formation was made with the MeV He+ ion-implanted one. The prism-coupling method was carried out to measure the dark modes in the quartz waveguides by using model 2010 prism coupler. Five modes were observed in the Ni+ implanted waveguide while 15 modes were found in the He+ ion-implanted one. Reflectivity calculation method was applied to fitting the refractive index profile. TRIM’98 (transport of ions in matter) code was used to simulate the damage profile in quartz by MeV Ni+ and He+ ions implantation, respectively. It is found that the refractive index profile in MeV Ni+ ions implanted waveguide is somewhat different in shape from that in MeV He+ ions implanted waveguide.  相似文献   

19.
Electron paramagnetic resonance (EPR) measurements have been used to characterise Er complexes formed in FZ silicon by the implantation of erbium together with either oxygen or fluorine. The samples have a 2 μm thick layer containing 1019 Er/cm3 alone or in addition 3×1019 O/cm3, 1020 O/cm3 or 1020 F/cm3. Various post-implantation anneals were carried out. Several different erbium centres, which have either C1h monoclinic or trigonal symmetry, are observed and the way in which the type of centre depends on the implantation and annealing conditions is reported.  相似文献   

20.
We present extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) analyses of Er–O and Er–F co-doped Si. Samples were prepared by multiple implants at 77 K of Er and co-dopant (O or F) ions resulting in the formation of a2 μm thick amorphous layer uniformly doped with 1×1019 Er/cm3 and 3×1019 O/cm3, 1×1020 O/cm3 or 1×1020 F/cm3. EXAFS measurements show that the local environment of the Er sites in the amorphous layers consists of 6 Si first neighbors. After epitaxial regrowth at 620°C for 3 h, Er is fully coordinated with 8 F ions in the Er–F samples, while Si and O ions are concomitantly present in the first shell of O co-doped samples. Post regrowth thermal treatments at 900°C leave the coordination unchanged in the Er+F, while the Er+O (ratio 1 : 10) doped samples present Er sites with a fully O coordinated shell with an average of 5 O atoms and 4 O atoms after 30 s and 12 h, respectively. We have also found that the fine structure and intensity of the high-resolution PL spectra are strongly dependent on the Er-impurity ratio and on thermal process parameters in the Er–O co-doped samples, while this is not observed for the F-doped samples. The most intense PL response at 15 K was obtained for the 1 : 3 E : O ratio, suggesting that an incomplete O shell around Er is particularly suitable for optical excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号