首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

2.
This paper presents an analytical investigation on the buckling analysis of symmetric sandwich plates with functionally graded material (FGM) face sheets resting on an elastic foundation based on the first-order shear deformation plate theory (FSDT) and subjected to mechanical, thermal and thermo-mechanical loads. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. An analytical approach is used to reduce the governing equations of stability and then solved using an analytical solution which is named as power series Frobenius method for symmetric sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of the plate aspect ratio, side-to-thickness ratio, loading type, sandwich plate type, volume fraction index, elastic foundation coefficients and boundary conditions on the buckling response of FGM sandwich plates. This has not been done before and serves to fill the gap of knowledge in this area.  相似文献   

3.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

4.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

5.
In this article, an analytical solution for buckling of moderately thick functionally graded (FG) sectorial plates is presented. It is assumed that the material properties of the FG plate vary through the thickness of the plate as a power function. The stability equations are derived according to the Mindlin plate theory. By introducing four new functions, the stability equations are decoupled. The decoupled stability equations are solved analytically for both sector and annular sector plates with two simply supported radial edges. Satisfying the edges conditions along the circular edges of the plate, an eigenvalue problem for finding the critical buckling load is obtained. Solving the eigenvalue problem, the numerical results for the critical buckling load and mode shapes are obtained for both sector and annular sector plates. Finally, the effects of boundary conditions, volume fraction, inner to outer radius ratio (annularity) and plate thickness are studied. The results for critical buckling load of functionally graded sectorial plates are reported for the first time and can be used as benchmark.  相似文献   

6.
功能梯度矩形板的三维弹性分析   总被引:5,自引:0,他引:5  
将功能梯度三维矩形板的位移变量按双三角级数展开,以弹性力学的平衡方程为基础.导出位移形式的平衡方程。引入状态空间方法,以三个位移分量及位移分量的一阶导数为状态变量,建立状态方程。考虑四边简支的边界条件,由状态方程得到了功能梯度三维矩形板的静力弯曲问题和自由振动问题的精确解。由给出的均匀矩形板自由振动问题的计算结果表明.与已有的理论解以及有限元方法的计算结果相吻合。假设功能梯度三维矩形板的材料常数沿板的厚度方向按照指数函数的规律变化.进一步给出了功能梯度三维矩形板的自由振动问题和静力弯曲问题的算例分析,并讨论了材料性质的梯度变化对板的动力响应和静力响应的影响。  相似文献   

7.
As a first endeavor, the buckling analysis of functionally graded (FG) arbitrary straight-sided quadrilateral plates rested on two-parameter elastic foundation under in-plane loads is presented. The formulation is based on the first order shear deformation theory (FSDT). The material properties are assumed to be graded in the thickness direction. The solution procedure is composed of transforming the governing equations from physical domain to computational domain and then discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. After studying the convergence of the method, its accuracy is demonstrated by comparing the obtained solutions with the existing results in literature for isotropic skew and FG rectangular plates. Then, the effects of thickness-to-length ratio, elastic foundation parameters, volume fraction index, geometrical shape and the boundary conditions on the critical buckling load parameter of the FG plates are studied.  相似文献   

8.
The thermoelastic buckling behavior of a thick plate made of a functionally graded material is investigated in this paper by using an exponential shear deformation plate theory. A simple power law based on the rule of mixtures is used to estimate the effective material properties as functions of the plate thickness. The neutral surface position for such functionally graded plates is determined on the basis of the nonlinear strain-displacement relations. Uniform, linear, and nonlinear temperature distributions across the plate are considered. An analytical approach is presented to find the critical buckling temperature, which can be used in engineering calculations. A numerical solution of the problem with the use of an exponential dependence for shear strains is presented. The results obtained are compared with available data.  相似文献   

9.
Post-buckling behaviour of sandwich plates with functionally graded material (FGM) face sheets under uniform temperature rise loading is considered. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation, which acts in both compression and tension. The derivation of equations is based on the first-order shear deformation plate theory. Thermomechanical non-homogeneous properties of FGM layers vary smoothly by the distribution of power law across the thickness, and temperature dependency of material constituents is taken into account. Using the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect sandwich plates with FGM face sheets are derived. The boundary conditions for the plate are assumed to be simply supported in all edges. The governing equations are reduced to two coupled equation in terms of stress function and lateral deflection. Employing the single mode approach combined with Galerkin technique, an approximate closed-form solution is presented to calculate the critical buckling temperature and post-buckling equilibrium path of the plate. Presented numerical examples contain the influences of power law index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation coefficients.  相似文献   

10.
An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces. Material properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instantaneous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature, displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two constituents, volume fraction profiles and the two homogenization schemes.  相似文献   

11.
Thermal buckling analysis of rectangular functionally graded plates (FGPs) with geometrical imperfections is presented in this paper. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate are derived using the classical plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate, graded through thickness, are described by a power function of the thickness variable. The plate is assumed to be under three types of thermal loading as uniform temperature rise, nonlinear temperature rise through the thickness, and axial temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling temperature change of an imperfect FGP. The results are reduced and compared with the results of perfect functionally graded and imperfect isotropic plates.  相似文献   

12.
基于Bernoulli-Euler梁理论,引入物理中面解耦了复合材料结构的面内变形与横向弯曲特性,研究了梯度多孔材料矩形截面梁在热载荷作用下的弯曲及过屈曲力学行为.假设沿梁厚度方向材料的性质是连续变化的,利用能量法推导了矩形截面梁的控制微分方程和边界条件,并用打靶法对无量纲化的控制方程进行数值求解.利用计算得到的结果分析了材料的性质、热载荷、边界条件对矩形截面梁非线性力学行为的影响.结果表明,对称材料模型下,固支梁与简支梁均显示出了典型的分支屈曲行为特征,而其临界屈曲热载荷值均会随着孔隙率系数的增加而单调增加.非对称材料模型下,固支梁仍显示出分支屈曲行为特征,但其临界屈曲热载荷不再随着孔隙率系数的变化而单调变化;而对于两端简支梁,发生了弯曲变形,弯曲挠度随载荷的增大而增大.  相似文献   

13.
This paper provides an analytical solution for the critical buckling stress of adhesively bonded aluminum hat sections under static axial compression. The governing rectangular plate member of the structure is treated based on the differential equation for out-of-plane deflections of thin plates. Finite element eigenvalue buckling analysis is performed to verify the assumed simply supported boundary conditions for common edges between adjacent plate elements. Elastic restraint is applied to the two loaded edges of the rectangular plate, and the relative critical buckling stress is computed according to the transcendental equations. It is found from experiments that there is no adhesive bonding failure in the elastic buckling stage. The analytical solution yields buckling stress predictions which are in reasonable agreement with measured values.  相似文献   

14.
The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson’s ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness.  相似文献   

15.
将双模量板等效为两个各向同性小矩形板组成的层合板,假定该层合板的中性面即为两个小矩形板的交界面。根据中性面上应力为零且薄板全厚度上应力的代数和为零,推导了双模量矩形薄板的中性面位置。本文采用严宗达提出的带补充项的双重正弦傅里叶级数通解,该通解可以适用于任意边界条件的矩形薄板且不需要叠加或者重新构造。联立边界条件和控制方程,求得通解中的待定系数并代入到通解中,即可得到任意边界条件下双模量矩形薄板的弯曲解析解。与有限元结果比较,本文结果符合工程精度要求。  相似文献   

16.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

17.
在Hamilton体系下,基于Euler梁理论研究了功能梯度材料梁受热冲击载荷作用时的动力屈曲问题;将非均匀功能梯度复合材料的物性参数假设为厚度坐标的幂函数形式,采用Laplace变换法和幂级数法解析求得热冲击下功能梯度梁内的动态温度场:首先将功能梯度梁的屈曲问题归结为辛空间中系统的零本征值问题,梁的屈曲载荷与屈曲模态分别对应于Hamilton体系下的辛本征值和本征解问题,由分叉条件求得屈曲模态和屈曲热轴力,根据屈曲热轴力求解临界屈曲升温载荷。给出了热冲击载荷作用下一类非均匀梯度材料梁屈曲特性的辛方法研究过程,讨论了材料的梯度特性、结构几何参数和热冲击载荷参数对临界温度的影响。  相似文献   

18.
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates.  相似文献   

19.
The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanaka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the first-order shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate incrementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equa- tions. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener’s positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.  相似文献   

20.
贾金政  马连生 《应用力学学报》2020,(1):231-238,I0016
基于一阶非线性梁理论和物理中面概念,导出了纵横向载荷作用下功能梯度材料(FGM)梁非线性弯曲和过屈曲问题的控制方程,并获得了该问题的精确解;据此解研究了梯度材料性质、外载荷、横向剪切变形以及边界条件等因素对功能梯度材料梁非线性力学行为的影响,分析中假设功能梯度材料性质只沿梁厚度方向,并按成分含量的幂指数函数形式变化。结果表明:纵横载荷共同作用下,功能梯度梁的弯曲构形将有无限多个;随着梯度指数的增大,梁的变形减小,临界载荷升高;随着长高比的增大,横向剪切变形的影响减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号