首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280?g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65?h with an average ethanol concentration and ethanol yield of 130.12?g/L and 0.477?g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28?days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75?L. The bioreactor was operated for 26?days at a dilution rate of 0.015?h?1. The ethanol concentration of the effluent reached 130.77?g/L ethanol while an average 8.18?g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.  相似文献   

2.
The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82?±?2 mg/g CAB-H and 730?±?20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 °C, 2-fold higher than when using 15 FPU/g bagasse, 44?±?2 mg/g CAB-H, and 450?±?50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0?±?0.2 g L?1 and 3.33 g L?1 h?1, respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L?1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L?1), ethanol concentration and productivity were 8.2?±?0.1 g L?1 and 2.7 g L?1 h?1 in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.  相似文献   

3.
Kinetics of ethanol production from carob pods extract by immobilizedS. cerevisiae cells in static and shake flask fermentation have been investigated. Shake flask fermentation proved to be a better fermentation system for the production of ethanol than static fermentation. The optimum values of ethanol concentration, ethanol productivity, ethanol yield, and fermentation efficiency were obtained at pH range 3.5–6.5 and temperature between 30–35°C. A maximum ethanol concentration (65 g/L), ethanol productivity (8.3 g/Lh), ethanol yield (0.44 g/g), and fermentation efficiency (95%) was achieved at an initial sugar concentration of 200, 150, 100, and 200 g/L, respectively. The highest values of specific ethanol production rate and specific sugar uptake rate were obtained at pH 6.5, temperature 40°C, and initial sugar concentration of 100 g/L. Other kinetic parameters, biomass concentration, biomass yield, and specific biomass production rate were maximum at pH 5.5, temperature 30°C, and initial sugar concentration 150 g/L. Under the same fermentation conditions non-sterilized carob pod extract gave higher ethanol concentration than sterilized medium. In repeated batch fermentations, the immobilizedS. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 5 d.  相似文献   

4.
Effects of pH and dissolved oxygen concentration on batchwise riboflavin production by a 5-fluorouracil (5-FU)-resistant mutant ofArthrobacter sp. were investigated. The reaction was carried out in a jar fermentor. The optimal pH of culture medium was around 7.3. Dissolved oxygen concentration was almost constant during fermentation at 600 rpm of agitation rate. Production of riboflavin reached a maximum of 160 mg/L after 70 h fermentation under the agitation rate of 600 rpm, aeration rate of 1.0 L/min, and pH 7.0.  相似文献   

5.
Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration (V flask/V medium ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y P/S; cell yield factor, Y X/S; and ethanol volumetric productivity, Q P) was investigated through a 22 full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y P/S?= 0.37 g/g and Q P?=?0.39 g/l.h) were found when the lowest aeration (2.5 V flask/V medium ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.  相似文献   

6.
A laboratory-scale microbubble dispersion (MBD) generator was shown to improve oxygen transfer to aerobic microorganisms when coupled to the conventional air-sparger. However, the process was not demonstrated on a large scale to prove its practical application. We investigated the scale-up of a spinning-disk MBD generator for the aerobic fermentation of Saccharomyces cerevisiae (baker’s yeast). A 1-L spinning-disk MBD generator was used to supply air for 1- and 50-L working volume fermentation of baker’s yeast. For the two levels investigated, the MBD generator maintained an adequate supply of surfactant-stabilized air microbubbles to the microorganisms at a relatively low agitation rate (150 rpm). There was a significant improvement in oxygen transfer to the microorganism relative to the conventional sparger. The volumetric mass transfer coefficient, k L a, for the MBD system at 150 rpm was 765 h−1 compared to 937 h−1 for the conventional sparger at 500 rpm. It is plausible to surmise that fermentation using larger working volumes may further improve the k L a values and the dissolved oxygen (DO) levels because of longer hold-up times and, consequently, improve cell growth. There was no statistically significant difference between the cell mass yield on substrate (0.43 g/g) under the MBD regime at an agitation rate of 150 rpm and that achieved for the conventional air-sparged system (0.53 g/g) at an agitation rate of 500 rpm. The total power consumption per unit volume of broth in the 50-L conventional air-sparged system was threefold that for the MBD unit for a similar product yield. Practical application of the MBD technology can be expected to reduce power consumption and therefore operating costs for aerobic fermentation.  相似文献   

7.
Glucose/xylose mixtures (90 g/L total sugar) were evaluated for their effect on ethanol fermentation by a recombinant flocculent Saccharomyces cerevisiae, MA-R4. Glucose was utilized faster than xylose at any ratio of glucose/xylose, although MA-R4 can simultaneously co-ferment both sugars. A high percentage of glucose can increase cell biomass production and therefore increase the rate of glucose utilization (1.224 g glucose/g biomass/h maximum) and ethanol formation (0.493 g ethanol/g biomass/h maximum). However, the best ratio of glucose/xylose for the highest xylose consumption rate (0.209 g xylose/g biomass/h) was 2:3. Ethanol concentration and yield increased and by-product (xylitol, glycerol, and acetic acid) concentration decreased as the proportion of glucose increased. The maximum ethanol concentration was 41.6 and 21.9 g/L after 72 h of fermentation with 90 g/L glucose and 90 g/L xylose, respectively, while the ethanol yield was 0.454 and 0.335 g/g in 90 g/L glucose and 90 g/L xylose media, respectively. High ethanol yield when a high percentage of glucose is available is likely due to decreased production of by-products, such as glycerol and acetic acid. These results suggest that ethanol selectivity is increased when a higher proportion of glucose is available and reduced when a higher proportion of xylose is available.  相似文献   

8.
The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose?Cxylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8?±?0.31?g L?1), ethanol productivity (1.06?g L?1 h?1) and ethanol yield (0.458?g g?1) by fermentation of glucose?Cxylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08?±?0.142?g L?1, ethanol yield of 0.44?g g?1, productivity of 0.45?g L?1?h?1 and biomass yield of 0.40?g g?1.  相似文献   

9.
The effects of different aeration conditions on xylitol production from corncob hemicellulose hydrolysate by Candida sp. ZU04 were investigated. Batch fermentations were carried out in a 3.7-L fermentor at 30°C, pH5.5, and agitation of 300 rpm. It was found that the two-phase aeration process was more effective than the one-phase aeration process in xylitol production. In the first 24h of the aerobic phase, a high aeration rate was applied, glucose was soon consumed, and biomass increased quickly. In the second fermentation phase, aeration rate was reduced and an improved xylitol yield was obtained. The maximum xylitol yield (0.76 g/g) was obtained with an aeration rate of 1.5 vvm (KLa of 37 h−1) for the first 24 h and 0.3 vvm (KLa of 6 h−1) from 24 to 96 h.  相似文献   

10.
Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40 % (v/v), and a filling time of 6 h, which resulted in a 92.20 % yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75 % and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h?1, with K I and K s values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h?1.  相似文献   

11.
The continuous production of ethanol from nonsterilized carob pod extract by immobilizedSaccharomyces cerevisiae on mineral kissiris using one- and two-reactor systems has been investigated. A maximum ethanol productivity of 9.6 g/L/h was obtained at an initial sugar concentration of 200 g/L and D = 0.4 h-1 with 68% of theoretical yield and 34% of sugar utilization using the one-reactor system. AtS 0 = 200 g/L, D = 0.05 h-1, 83% of theoretical yield, and 64% of sugar utilization, an ethanol productivity of 2.6 g/L/h was achieved. In the tworeactor system, a maximum ethanol productivity of 11.4 g/L/h was obtained at S0 = 200 g/L and D = 0.4 h-1 with 68.5% of theoretical yield and 41.5% of sugar utilization. The two-reactor system was operated at a constant dilution rate of 0.3 h-1 for 60 d without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical), and sugar utilization were 10.7 g/L/h, 71.5%, and 48%, respectively.  相似文献   

12.
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30?g?g?1) and productivity (0.19?g?L?1?h?1). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3?g?L?1 resulted in high biomass production. The highest biomass concentration (21?g?L?1), yield (0.45?g?g?1) and productivity (0.31?g?L?1?h?1), as well as ribonucleotide production (13.13?mg?g?1), were observed at 700?rpm and 0.5?vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.  相似文献   

13.
Transglutaminase catalyzes the cross-linking reaction between a glutamine residue and a free amine residue of proteins leading to the formation of protein aggregates. In this research, the effects of temperature, agitation, and aeration on the production of transglutaminase in a bench reactor by a newly isolated Streptomyces sp. from Brazilian soils were investigated using a factorial experimental design. The parameters evaluated influenced the enzyme production, and the data showed that the best conditions to enhance cell growth were different from those leading to enhanced transglutaminase production. Thus, a temperature and agitation shift strategy was adopted to increase transglutaminase productivity. The temperature and agitation were first set at 34 °C and 350 rpm, respectively, and after 24 h decreasing to 26 °C and 150 rpm until the end of fermentation. The transglutaminase activity obtained was 2.18 U/mL after 42 h of fermentation, which was twice than that obtained using a constant temperature and agitation fermentation strategy.  相似文献   

14.
The fermentation kinetics for the conversion of rice straw hemicellulosic hydrolysate to xylitol by the yeast Candida guilliermondii was evaluated under batch conditions. The fermentation was accomplished in a 1 L working volume stirred-tank reactor with aeration of 1.3 vvm and agitation of 300 rpm (kLa=15/h). The maximum specific rate of xylitol formation (0.12 g/g) was achieved when the specific growth rate was lowered to 1/5 of its highest value. From analysis of the fermentation kinetics, a linear correlation between specific growth rate (μx) and specific rate of xylitol formation (qp) was evident. Based on the Gaden model, this bioprocess was classified as growth-associated production and the relationship between μx and qp can be described by the equation qp=6.31μx.  相似文献   

15.
A self-aggregating strain ofSaccharomyces uvarum (U4) was used as a biocatalyst to carry out continuous ethanol fermentation in a tower fermentor equipped with a cell separator. Cell aggregates (2–3 mm) formed a stable packed bed in the fermentor, and the cell separator retained yeast cells effectively. Corn steep liquor was used as a nitrogen source for the fermentation of corn syrup and black strap molasses. An ethanol productivity of 54 g/L/h was reached using corn syrup at a dilution rate of 0.7/h, and sugar concentration in the feed was 15% (w/v). For molasses fermentation, an ethanol productivity of 22 g/L/h was obtained at a dilution rate of 0.7/h, and sugar concentration in the feed was 12.5% (w/v). Ethanol yields obtained from tower fermentation are higher than those obtained from flask fermentation (96% for corn syrup fermentation and 92% for molasses fermentation). No significant loss in fermentation activity was observed after 3 mo of operation.  相似文献   

16.
Agricultural by-products are becoming an attractive substrate for bioethanol production. The aim of this study was to evaluate the effects of regional differences in the rice hulls using Escherichia coli KO11 for bioethanol production. The rice hulls coded Edirne were obtained from Thrace Region, and the rice hulls coded Izmir were obtained from Aegean Region in Turkey. Rice hulls were treated by dilute acid before using them as substrates. The cells were incubated on an orbital shaker at 160 rpm under 30 °C during 96 h of the fermentation period. It was found that the maximum yield of ethanol from sugar (0.44 g ethanol/g reducing sugar) was obtained with the substrate C/N ratio of 29.16 in Izmir medium. The main difference was the dominant carbon source available as a substrate. It was detected that glucose concentration was about 2.5 times higher in Izmir medium, whereas xylose concentration was about two times higher in Edirne medium. The different results obtained with rice hulls from different origins could depend on the type of paddy as well as different cultivation conditions. These findings provide a valuable indicator for identifying suitable agricultural waste materials to be used as substrates for bioethanol production.  相似文献   

17.
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48?±?0.02 g g?1), theoretical yield (93?±?3 %), and extracellular invertase productivity (1,430?±?50 IU l?1 h?1), respectively, when fermenting 180 g sugars l?1 in molasses medium at 43 °C in 300 m3 working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M?1) and entropy (ΔS*) (?202.88 J M?1 K?1) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l?1 h?1) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.  相似文献   

18.
In this study, a fermentor consisting of four linked stirred towers that can be used for simultaneous saccharification and fermentation (SSF) and for the accumulation of cell mass was applied to the continuous production of ethanol using cassava as the starchy material. For the continuous process with SSF, the pretreated cassava liquor and saccharification enzyme at total sugar concentrations of 175 g/L and 195 g/L were continuously fed to the fermentor with dilution rates of 0.014, 0.021, 0.031, 0.042, and 0.05 h−1. Considering the maximum saccharification time, the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.042 h−1. At dilution rates in the range of 0.014 h−1 to 0.042 h−1, high production rates were observed, and the yeast in the first to fourth fermentor showed long-term stability for 2 months with good performance. Under the optimal culture conditions with a feed sugar concentration of 195 g/L and dilution rate of 0.042 h−1, the ethanol volumetric productivity and ethanol yield were 3.58 g/L∙h and 86.2%, respectively. The cell concentrations in the first to fourth stirred tower fermentors were 74.3, 71.5, 71.2, and 70.1 g dry cell/L, respectively. The self-flocculating yeast, Saccharomyces cerevisiae CHFY0321, developed by our group showed excellent fermentation results under continuous ethanol production.  相似文献   

19.
This paper investigates the efficiency of the organic acids on the pretreatment of an industrially generated cotton gin waste for the removal of lignin, thereby releasing cellulose and hemicellulose as fermentable sugar components. Cotton gin waste was pretreated with various organic acids namely lactic acid, oxalic acid, citric acid, and maleic acid. Among these, maleic acid was found to be the most efficient producing maximum xylose sugar (126.05?±?0.74 g/g) at the optimum pretreatment condition of 150 °C, 500 mM, and 45 min. The pretreatment efficiency was comparable to the conventional dilute sulfuric acid pretreatment. A lignin removal of 88% was achieved by treating maleic acid pretreated biomass in a mixture of sodium sulfite and sodium chlorite. The pretreated biomass was further evaluated for the release of sugar by enzymatic hydrolysis and subsequently bioethanol production from hydrolysates. The maximum 686.13 g/g saccharification yield was achieved with maleic acid pretreated biomass which was slightly higher than the sulfuric acid (675.26 g/g) pretreated waste. The fermentation of mixed hydrolysates(41.75 g/l) produced 18.74 g/l bioethanol concentration with 2.25 g/l/h ethanol productivity and 0.48 g/g ethanol yield using sequential use of Saccharomyces cerevisiae and Pichia stipitis yeast strains. The production of bioethanol was higher than the ethanol produced using co-culture in comparison to sequential culture. Thus, it has been demonstrated that the maleic acid pretreatment and fermentation using sequential use of yeast strains are efficient for bioethanol production from cotton gin waste.  相似文献   

20.
The effects of aeration and agitation on the properties and production of xanthan gum from crude glycerin biodiesel (CGB) by Xanthomonas campestris mangiferaeindicae 2103 were investigated and optimized using a response surface methodology. The xanthan gum was produced from CGB in a bioreactor at 28 °C for 120 h. Optimization procedures indicated that 0.97 vvm at 497.76 rpm resulted in a xanthan gum production of 5.59 g L?1 and 1.05 vvm at 484.75 rpm maximized the biomass to 3.26 g L?1. Moreover, the combination of 1.05 vvm at 499.40 rpm maximized the viscosity of xanthan at 0.5 % (m/v), 25 °C, and 25 s?1 (255.40 mPa s). The other responses did not generate predictive models. Low agitation contributed to the increase of xanthan gum production, biomass, viscosity, molecular mass, and the pyruvic acid concentration. Increases in the agitation contributed to the formation of xanthan gum with high mannose concentration. Decreases in the aeration contributed to the xanthan gum production and the formation of biopolymer with high mannose and glucose concentrations. Increases in aeration contributed to increased biomass, viscosity, and formation of xanthan gum with greater resistance to thermal degradation. Overall, aeration and agitation of CGB fermentation significantly influenced the production of xanthan gum and its properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号