首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical conductivities of (1−x) Li2O · x BaO · 2 SiO2, (1−x) Na2O · x MgO ·2 SiO2, (1−x) Na2O · x CaO · SiO2 and (1−x) Na2O · x BaO · 2SiO2 glasses were measured at temperature ranging from room temperature to 450°C. The transport numbers for Na+ ion in (1−x) Na2O · x BaO · 2 SiO2 glasses were measured. It was found that the alkali ion carried a significant part of the current in these glasses except one that had no alkali ions, and the conductivity decreased markedly as the alkali oxide was substituted by an alkaline earth oxide. The results of conductivity measurements combined with the data hitherto reported on mixed alkali glasses led to the proposal that the so-called mixed alkali effect could be explained on the basis of the independent path model in which it is assumed that cations can move only through vacant sites left by those of the same type.  相似文献   

2.
K. Hirao  T. Komatsu  N. Soga 《Journal of Non》1980,40(1-3):315-323
Mössbauer absorption measurements have been made at room temperature on 57Fe in iron sodium silicate glasses containing 3–15 mol% Fe2O3 and various iron alkali silicate crystals in order to study the state of iron in these glasses. The spectra of all the glasses gave one doublet with a quadrupole splitting varying from 0.73–0.78 mm s−1, while those of Na2O · Fe2O3 · 4 SiO2 and 5 Na2O · Fe2O3 · 8 SiO2 crystals showed much smaller quadrupole splitting, 0.28 mm s−1 and 0.10 mm s−1, respectively, and an asymmetrical doublet of much narrower linewidth. When sodium was replaced by other alkali metals of larger size, such as K and Cs, in MFeSi2O6 and MFeSi3O8 crystals, the quadrupole splitting became wider and approached to 0.73 mm s−1. Such a variation was not observed for glasses. These results suggest that a larger number of non-identical sites exist in iron sodium silicate glasses than in the corresponding crystals.  相似文献   

3.
Melts with the basic compositions 10Na2O · 10MgO · xAl2O3 · (80−x)SiO2 (x=0, 5, 10, 15 and 20), 10Na2O · xMgO · 10Al2O3 · (80−x)SiO2 (x=5, 10, 15 and 20) and xNa2O · 10MgO · 10Al2O3 · (80−x)SiO2 (x=5, 10 and 15) all doped with 0.25 mol% Fe2O3 were studied using square-wave voltammetry. The temperatures applied were in the range of 1000–1600 °C. The square-wave voltammograms recorded show peaks caused by the reduction of Fe3+ to Fe2+. The attributed peak potentials measured decreased linearly with decreasing temperatures. Increasing the MgO-concentration led to more negative peak potentials. Introducing alumina in the melt first resulted in less negative peak potentials. If the molar Al2O3-concentration is equal to that of Na2O (=10 mol%) the peak potentials are least negative. Further increase of the Al2O3-concentration led to more negative peak potentials. The variation of the Na2O-concentration led to a maximum in the peak potentials at an Na2O-concentration of 10 mol%. An empirical formula which allows the calculation of standard potentials from the chemical composition is proposed. Furthermore, a structural explanation for the effect of the chemical composition is given. Especially, the incorporation of Al2O3 as AlO4-tetrahedra at [Al2O3] < [Na2O] and as network modifier at larger concentrations was structurally explained by the similarities of Fe2+ and Mg2+, with respect to cation radii and metal–oxygen bond lengths.  相似文献   

4.
Diffusion coefficients of iron were measured in glass melts with the basic compositions 5Na2O · xMgO · (15−x)CaO · yAl2O3 · (80−y)SiO2 with x=5, 10 and y=0, 5, 7.5, 10 and 15. The melts were doped with 0.25 mol% Fe2O3 and studied in the temperature range from 1000 to 1600 °C using square-wave voltammetry. The voltammograms exhibited distinct peaks attributed to the reduction of Fe3+ to Fe2+, from which peak currents mixed diffusion coefficients of iron were calculated. Diffusion coefficients in all melt compositions which did not show crystallization could be fitted to Arrhenius equation. The diffusivities measured in different melt compositions were related to the same viscosity, i.e. not the same temperature. Increasing the alumina concentration from 5 to 10 mol% resulted in an increase of the viscosity corrected diffusivities. At further increasing alumina concentrations, the diffusivities get smaller again. This can be explained by the stabilizing effect of Na+ and Ca2+ on FeO4 and AlO4-tetrahedra, which strengthens the incorporation of Fe3+ into the glass structure.  相似文献   

5.
The linewidth-broadening of the EPR spectra of Cu2+ in silicate, borate and phosphate glasses was analyzed in terms of the distribution of g| and A|| and δA|) and related to the distribution of the rigidity of the network structure. X- and K-band spectra were measured for the glasses doped with 63Cu2+ (93% abundance). The linewidth of the HFS shoulders with parallel orientation to H increased linearly with increasing m or microwave frequency. δg| and δA| showed a marked dependence on glass composition. For example, in Na2O---B2O3 glasses, on going from x (mol% of Na2O) being small through intermediate to large, δg| varied from small through large to negligibly small. In contrast to these glasses δg| was extremely large for 75PbO · 25B2O3 glass. The large δg| for the Na2O---B2O3 glassesof intermediate x was attributed to the coexistence of various borate groups competitively coordinating to Cu2+. Negligibly small δg| for 70Na2O · 30B2O3 glass and extremely large δg| for 75PbO ·25B2O3 glass, both with a narrower structural distribution, reflect regidity of the glass network. The Pb---O bonding is strong enough to distort the coordination of Cu2+-complex. The situation is the reverse in Na2O---B2O3 glasses.  相似文献   

6.
T. Kokubo  Y. Inaka  S. Sakka 《Journal of Non》1986,80(1-3):518-526
Gallate glasses containing no conventional glass formers were obtained in the systems (Na2O, K2O or Cs2O)-Ta2O5---Ga2O3 and (Sr or BaO)-Ta2O5---Ga2O3 by an ordinary crucible-melting technique. The glasses showed high optical transmission in the infrared as well as in the visible region. Infrared spectroscopic analysis suggested that the Ga3+ ions are tetrahedrally coordinated in the glasses. The glass-forming tendency of the melt and the infrared transmission of the glasses are discussed in terms of the glass structure.  相似文献   

7.
Sun Yuzhen  Su Youan  He Baoye 《Journal of Non》1986,80(1-3):335-340
The influence of the mixed alkali effect on the chemical durability of Na2O---TiO2---SiO2 glasses during substitution of K2O for Na2O in 21Na2O---26TiO2---53SiO2 glasses was investigated. The best chemical durability was found at K2O/Na2O = 2.5 where the minimum was close to K+ ions of larger size. It was shown that the water corrosion process of the system was predominantly controlled by both the mobility and the exchange function of K+ ions resulting in the generation of a titanium-rich and silicon-rich layer at the surface. The mixed alkali effect can therefore be applied to lower the rate of water corrosion and increase chemical durability so that optical glasses with higher chemical durability can be obtained.  相似文献   

8.
11B (I=3/2) MAS NMR in the binary glass system xV2O5–B2O3 (x=0.053, 0.43) and the ternary glass system xV2O5–B2O3–PbO (0.1x1.5) has been investigated at room temperature. In the xV2O5–B2O3 glasses, one NMR line due to BO3 unit was observed. Meanwhile in the xV2O5–B2O3–PbO, two NMR lines which arise from BO3 and BO4 units were detected, where the appearance of BO4 units is produced by the presence of PbO. From the computer-simulation of the 11B NMR central transition line (m=−1/2↔1/2), the quadrupole parameters (e2qQ/h and η) for BO3 units in xV2O5–B2O3, and those for BO3 and BO4 units in xV2O5–B2O3–PbO were obtained as a function of x. As the V2O5 content increases in xV2O5–B2O3–PbO, the e2qQ/h and η values of the BO3 associated resonance are found to slightly decrease and increase, respectively. Meanwhile, the e2qQ/h and η values of BO4 associated resonance in xV2O5–B2O3–PbO are found to slightly increase and decrease, respectively. By comparing the intensities of the total transitions (m=−3/2↔−1/2,m=−1/2↔1/2, and 1/2↔3/2) for the 11B NMR line of BO3 and BO4 units contained in xV2O5–B2O3–PbO with those of respective standard samples of 0.053V2O5–B2O3 and NaBH4, the quantitative fractions of BO3 and BO4 in xV2O5–B2O3–PbO were obtained as a function of x.  相似文献   

9.
The internal friction of xNa2O·(0.5−x)V2O5·O.5P2O5(x = 0.025–0.3) glasses was studied using the low-frequency torsion pendulum technique. The temperature spectrum of internal friction reveals three maxima. Maximum 1, the so-called “electron” maximum, is the same as observed in binary vanadium-phosphate glasses. The origin of maximum 2 can be attributed to ion migration. Maximum 3 appears for glasses containing more than 10 mol.% Na2O and is probably connected with sodium-proton interactions.  相似文献   

10.
J.W Park  Haydn Chen 《Journal of Non》1980,40(1-3):515-525
The infrared absorption spectra of sodium-disilicate glasses containing various amounts of Fe2O3 ([Na2O · 2 SiO2]1−x [Fe2O3]x, where X = 0.05, 0.1 and 0.2) were investigated in the wavenumber range from 200–2000 cm−1. The addition of Fe2O3 to the sodium-disilicate glass does not seem to introduce any new absorption band as compared with the spectrum of a pure sodium-disilicate glass; nevertheless, a general shift of the existing absorption bands toward lower wavenumbers is observed. The amount of shift is, in fact, proportional to the content of Fe2O3 in the glass. This observation is consistent with the recently proposed structural model for the bonding of Fe3+ ions in the iron-sodium-silicate glass system.

Annealing of 20 mol% iron oxide glasses at 550 and 580°C produced an extra sharp infrared absorption peak at about 610 cm−1 wavenumber. This new peak is believed to be related to the crystallized particles of the glass as concluded from both a scanning electron micrograph and an electron diffraction pattern.  相似文献   


11.
Alkoxide derived gels were prepared in the system Na2O---B2O3---SiO2. The gel compositions were situated in the liquid-liquid immiscibility area of the phase equilibrium diagram.

Hydrolytic resistance tests were performed on the gels heat-treated at temperatures ranging between 120 to 850 °C. The Na2O, B2O3 and SiO2 extracted from the attack gels were analyzed. The experimental results indicate that the amount of B2O3 has a significant influence on the chemical durability of the heat-treated gels. At temperatures of 850 °C the greater the B2O3 mol% the greater are the amounts of Na2O and B2O3 extracted. Different behaviour was observed for gels heat-treated at 600 °C where the amounts of B2O3 and Na2O extracted slightly increases as the B2O3 mol% increases. Small amounts of extracted SiO2 were always observed.

These results are complemented with other measurements so that an explanation of the controlling mechanism is given.  相似文献   


12.
Ag+/Na+ ion-exchanged R2O–Al2O3–SiO2 glasses with uniform concentration profile of Ag+ and Na+ were prepared by heat treatment in molten silver salt followed by holding at the same temperature in an ambient atmosphere. Their glass transition temperature (Tg) and thermal expansion coefficient (TEC) were measured and structures were investigated using 29Si-MAS NMR, 27Al-MAS NMR, IR and Raman spectroscopies. Both Tg and TEC decreased with increase of the exchange ratio, but Tg was still above the ion-exchange temperature of 400°C even for the fully exchanged sample. The 29Si- and 27Al-MAS NMR spectra were mostly unchanged and no sign of the structural alteration of the glass network was observed. On the other hand, the vibrational spectra showed remarkable peak shifts depending on the exchange ratio. From these structural results, it was found that when the exchange ratio was low, the introduced Ag+ ions were stabilized at the non-bridging oxygen (NBO) site, and then Na+ ions in AlØ4 site were exchanged by Ag+ ions after full replacement of NBO sites, where Ø represents the bridging oxygen.  相似文献   

13.
Xiao Shaozhan  Meng Qingan   《Journal of Non》1986,80(1-3):195-200
11B Fourier transform spectra have been used to study the structure of Na2O---B2O3---SiO2 glasses of mid-alkali content. Based on the measurements of the fraction N4 of four-coordinated borons, it has been found that for K = mol.% SiO2/mol.% B2O3 8 and R = mol.% Na2O/mol.% B2O3 = 1, N4 is obviously smaller than 1 rather than equal to 1 as assumed in the relevant literature. Only when R reaches a value appropriately greater than 1, can the case where N4 = 1 occur. A structural model suggested in this paper can satisfactorily explain the fact.  相似文献   

14.
Glasses in the system Na2O/B2O3/Al2O3/In2O3 were melted and subsequently tempered in the range from 500 to 700 °C. Depending on the chemical composition, various crystalline phases were observed. From samples without Al2O3, In2O3 could not be crystallized from homogeneous glasses, because either spontaneous In2O3 crystallization occurred during cooling, or other phases such as NaInO2 were formed during tempering. The addition of alumina, however, controlled the crystallization of In2O3. Depending on the crystallization temperature applied, the crystallite sizes were in the range from 13 to 53 nm. The glass matrix can be dissolved by soaking the powdered glass in water. This procedure can be used to prepare nano-crystalline In2O3-powders.  相似文献   

15.
The crossover from a frequency independent to a frequency dependent ac response has been studied in glasses with the composition 37.2Na2O-12.8CaO5 · 50P2O5 and 30Na2O-5CaO-7.5Al2O3-57.5P2O5 (mol%) containing 5 × 10−3 ≤ mol% Ag2O ≤ 5 × 10−1. Recently, we have established that in these glasses the diffusion coefficient of guest silver ions varies in space. In this case, as a first approximation, the diffusion coefficient may be considered as a constant within regions whose size is no less than 10 nm across. We assume that the diffusion of sodium ions can be given by the D(r) coefficient with the same spatial dispersion as that of silver ions. It is demonstrated that the frequency dependence of ac response is in fair agreement with the assumption.  相似文献   

16.
H. Bach  J.A. Duffy   《Journal of Non》1979,30(3):229-240
By selecting carefully controlled conditions for the thermal treatment of sodium borate glasses coated with PbO films, it is possible to prevent Pb2+ ions from penetrating deeply into the glass. For low alkali glasses, an interdiffusion layer can be formed, which sub-surface cation profiling (by ion beam induced radiation) shows is a solid solution of Na2O and B2O3 in PbO which acts as solvent. Experiments with 18.0 mol-% Na2O glass show that it is possible to transform such an interdiffusion layer into a second type in which Na2O and B2O3 together act as solvent and the concentration of PbO solute varies through the layer. For both types of layer the Na2O : B2O3 ratio is different from that of the glass substrate, and for the production of the second type of layer it is shown that an important factor connected with penetration of PbO into the glass surface is a “sweating” process in which thermal treatment of the glass, even in the absence of PbO, results in migration of Na+ ions so that the glass surface has a Na2O content higher than that of the bulk glass. Changes in the UV spectra of the Pb2+ ion are correlated with the formation of the interdiffusion layers, and results show that types of layer have optical basicities significantly greater than that of the glass substrate, through either the high PbO or high Na2O content.  相似文献   

17.
The vapor phase epitaxy of thin epilayers of VO2 and V1−xCrxO2 on TiO2 transparent substrates is described. Chemical vapor deposition occurs by reacting a (VOCL3/CrO2Cl2/H2O/H2) mixture at about 800°C using argon as a carrier gas. The preparation of pure VO2 requires special care to make it homogeneously stoichiometric and to obtain steep concentration profiles at the TiO2/VO2 interface. Layers were obtained which had electrical and optical properties comparable to the best bulk crystals grown by other techniques. Homogeneous solid solutions of V1−xCrxO2 epilayers were also grown for the first time in the range o < x < 0.17. Chromium concentration and homogeneity were determined by electron microprobe analysis. The separation coefficient k was also found to vary with x. It is close to unity below x = 0.001 and above this value Cr is incorporated more easily. High quality heteroepitaxial layers (1 cm2 area, 1 to 30 μm thickness) of V1−xCrxO2 have for the first time allowed the measurement of the optical absorption coefficient.  相似文献   

18.
The La L1 and L3 XANES and L3 EXAFS have been investigated for the series of glasses 10K2O---50SiO2---x La2O3 (x = 1, 5, 10) and (10 − x)K2O---40SiO2−(x/3)La2O3 (x = 7.5, 5, 2.5) and model compounds La2O3, LaAlO3, LaPO4, La2NiO4, La2CuO4 and La(OH)3. An edge resonance at 25 eV above the L1 edge in the glass spectra is concentration-dependent, decreasing in intensity with increasing lanthanum concentration. The 2s → nd forbidden transition increases with La2O3 concentration, indicating a reduction in the ‘average’ site symmetry of the first coordination shell of La. Mapping X(k) space, which is a new and promising technique, was employed to extract bond distance, coordination number and thermal parameters from the EXAFS. By this method, one calculates the complete X(k) space a function of all physically reasonable values of the adjusted parameters in all possible combinations. The advantage in this method is the assurance of a global minimum. Bond lengths were comparable to those obtained by Fourier transforming the phase corrected EXAFS. The values are 2.42 Å (± 0.03 Å) for La---O. The coordination numbers (N ≤ 7 ± 1.5) were derived by mapping and comparison to the published structures for other La compounds. X(k) mapping is compared with least-squares fitting the data, and the correlation between the Debye-Waller factor and coordination number is also discussed.  相似文献   

19.
The 11B, 27Al, 29Si and 31P magic angle spinning (MAS) NMR spectra of MO–P2O5, MO–SiO2–P2O5 and MO(M2O)–SiO2–Al2O3–B2O3 (M=Mg, Ca, Sr and Ba, M=Na) glasses were examined. In binary MO–P2O5 (M=Ca and Mg) glasses, the distributions of the phosphate sites, P(Qn), can be expressed by a theoretical prediction that P2O5 reacts quantitatively with MO. In the ternary 0.30MO–0.05SiO2–0.65P2O5 glasses, the 6-coordinated silicon sites were detected, whose population increases in the order of MgOxCaO–0.05SiO2–(0.95−x)P2O5 glasses, its population increases with an increase in f (=([P2O5]−[MO]−[B2O3]−[Na2O])/[SiO2]) and has maximum at f=9. The signal due to the 5-coordinated silicon atoms is also observed when x is smaller than 0.45. When three network-forming oxides such as SiO2, Al2O3 and B2O3 coexist, Al2O3 reacts preferably with MO. The populations of 4-coordinated boron atoms, N4, are expressed well with r/(1−r), where r=([Na2O]−[Al2O3])/([Na2O]−[Al2O3]+[B2O3]). The correlation of the Raman signal at 1210 and 1350 cm−1 with the NMR signal of Si(Q6) at −215 ppm is also seen.  相似文献   

20.
The solubility of a series of hexaferrite derivatives of BaFe12O19 in solvents of the system Na2O-B2O3 with oxide ratios of 7:3 and 3:2 has been investigated. The temperature dependences of the saturation concentration in these solvents are determined for ferrites with the nominal compositions Ba0.8Pb0.2Fe12O19, BaFe10Ga2O19, BaFe10Al2O19 and BaFe8Mn2 Ti2O19. Single crystals of BaFe12O19, in which part of the metal ions are replaced by various amounts of Pb2+, Ga3+, Al3+ and Mn2+ + Ti4+ ions, are g rown from the solutions by the slow cooling technique. The distribution coefficients of the substituting ions and the compositions of the crystals obtained are established by microprobe analysis (EPMA). Information on the position of substitution is obtained from the Mössbauer spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号