首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Infectious hepatitis B virus (HBV), namely Dane particles (DPs), consists of a core nucleocapsid including genome DNA covered with an envelope of hepatitis B surface antigen (HBsAg). We report the synthesis, structure, and HBV-trapping capability of multilayered protein nanotubes having an anti-HBsAg antibody (HBsAb) layer as an internal wall. The nanotubes were prepared using an alternating layer-by-layer assembly of human serum albumin (HSA) and oppositely charged poly-L-arginine (PLA) into a nanoporous polycarbonate (PC) membrane (pore size, 400 nm), followed by depositions of poly-L-glutamic acid (PLG) and HBsAb. Subsequent dissolution of the PC template yielded (PLA/HSA)(2)PLA/PLG/HBsAb nanotubes (AbNTs). The SEM measurements revealed the formation of uniform hollow cylinders with a 414 ± 16 nm outer diameter and 59 ± 4 nm wall thickness. In an aqueous medium, the swelled nanotubes captured noninfectious spherical small particles of HBsAg (SPs); the binding constant was 3.5 × 10(7) M(-1). Surprisingly, the amount of genome DNA in the HBV solution (HBsAg-positive plasma or DP-rich solution) decreased dramatically after incubation with the AbNTs (-3.9?log order), which implies that the infectious DPs were completely entrapped into the one-dimensional pore space of the AbNTs.  相似文献   

2.
We present the synthesis and structure of various protein nanotubes comprised of an alternate layer-by-layer (LbL) assembly using a polycation as an electrostatic glue. The nanotubes were fabricated by sequential LbL depositions of positively charged polycations and negatively charged proteins into a porous polycarbonate (PC) membrane, followed by release of the cylindrical core by quick dissolution of the template with CH(2)Cl(2). This procedure provides a variety of protein nanotubes without interlayer cross-linking. The three-cycle depositions of poly-L-arginine (PLA) and human serum albumin (HSA, M(w)=66.5 kDa) into the porous PC template (pore diameter, D(p)=400 nm) yielded well-defined (PLA/HSA)(3) nanotubes with an outer diameter of 419+/-29 nm and a wall thickness of 46+/-8 nm, revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. The outer diameter of the tubules can be controlled by the pore size of the template (200-800 nm), whereas the wall thickness is always constant, independent of the D(p) value. The (PEI/HSA)(3) (PEI: polyethylenimine) nanotubes showed a slightly thin wall of 39+/-5 nm. CD spectra of the multilayered (PEI/HSA)(n) film on a flat quartz plate suggested that the secondary structure of HSA between the polycations was almost the same as that in aqueous solution. The three-cycle LbL depositions of PLA and ferritin (M(w)=460 kDa) or myoglobin (Mb, M(w)=1.7 kDa) into the porous PC membrane also gave cylindrical hollow structures. The wall thickness of the (PLA/ferritin)(3) and (PLA/Mb)(3) nanotubes were 55+/-5 nm and 31+/-4 nm; it depends on the globular size of the protein (ferritin>HSA>Mb). The individual ferritin molecule was clearly seen in the tubular walls by SEM and TEM measurements.  相似文献   

3.
A nanocylindrical wall structure was obtained by layer‐by‐layer (LbL) assembly of poly‐L ‐arginine (PLA) and human serum albumin (HSA) and characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and cryogenic transmission electron microscopy (cryo‐TEM). SEM and SFM measurements of a lyophilized powder of (PLA/HSA)3 nanotubes yielded images of round, chimney‐like architectures with approximately 100 nm wall thickness. Cryo‐TEM images of the hydrated sample revealed that the tube walls are composed of densely packed HSA molecules. Moreover, when small‐angle X‐ray scattering was used to characterize the individual PLA and HSA components in aqueous solutions, maximum diameters of approximately 28 nm and 8 nm were obtained, respectively. These values indicate the minimum thickness of wall layers consisting of PLA and HSA. It can also be concluded from SEM as well as from cryo‐TEM images that the protein cylinders are considerably swollen in the presence of water. Furthermore, HSA retains esterase activity if assembled in nanotubes, as indicated by measurements of para‐nitrophenyl acetate hydrolysis under semi‐physiological conditions (pH 7.4, 22 °C). The enzyme activity parameters (Michaelis constant, Km, and catalytic constant, kcat) were comparable to those of free HSA.  相似文献   

4.
《化学:亚洲杂志》2018,13(19):2796-2799
This paper describes the synthesis and catalytic activities of stratiform protein microtube reactors containing a glucose oxidase (GOD) enzyme layer. The microtubes were fabricated by layer‐by‐layer assembly using a microporous polycarbonate membrane with human serum albumin (HSA), poly(l ‐arginine) (PLA), and GOD. The GOD component was introduced into the tube wall as the innermost layer, the intermediate layer, or all internal protein layers. SEM observations revealed the formation of uniform hollow cylinders with ca. 1.17 μm outer diameter and ca. 135 nm wall thickness. In aqueous medium, each microtube catalyzed β‐d ‐glucose oxidation with high efficiency. We first ascertained the enzyme parameters (Km and kcat) of these microtube reactors. Different catalytic activities that have dependent on the GOD layer position in the cylindrical wall have been elucidated.  相似文献   

5.
Heparin (HEP) and periodate‐oxidized heparin (O‐HEP) nanotubes were prepared by combining the template method with a layer‐by‐layer (LbL) technique. The tubular structure was obtained and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM). O‐HEP is one of the HEP derivatives that contains anticoagulant activity and preserves its ability for other effects. Chitosan (CHI) and O‐HEP have been used to fabricate nanotubes by covalent cross‐linking Schiff base reactions. It is demonstrated that the obtained nanotubes have the significant feature of autofluorescence without the addition of any fluorescent dyes and they retain their anticoagulation activity. Compared with O‐HEP/CHI nanotubes, HEP/CHI nanotubes show high anticoagulation activity and do not have autofluorescence. Furthermore, this method could be extended to other copolysaccharide derivatives for the preparation of autofluorescent nanomaterials.  相似文献   

6.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   

7.
One-dimensional iron metallic nanotubes were prepared by electroless deposition within the pores of polycarbonate (PC) membranes. The longitudinal nucleation of the nanotubes along the pore walls was achieved by mounting the PC membrane between two halves of a U-shaped reaction tube. Palladium nanoparticles were post-deposited on the inner wall of the nanotubes. The composition, morphology, and structure of the Pd/Fe nanotubes were characterized by transmission electron microscopy, scanning electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. A glassy carbon (GC) electrode modified with the free Pd/Fe bimetallic nanotubes (isolated after the dissolution of the host membranes) showed small improvement on the overpotential oxidation of ascorbic acid in comparison to the bare GC electrode. Alternatively, the Pd/Fe-polycarbonate membrane was covered with a sputtered gold thin layer of 10?nm from one side and mounted in a homemade electrochemical cell acting as the working electrode. The potential use of these functional membranes as catalytic surfaces for the electrochemical monitoring of ascorbic acid was investigated by cyclic voltammetry and amperometry. In the presence of a phosphate buffer solution, pH?7, Pd/Fe-polycarbonate membranes showed excellent electrocatalytic properties toward the oxidation of ascorbic acid even at potentials as low as 0?mV versus a Ag/AgCl reference electrode. In addition to the substantial lower overpotential, these electrodes offered selectivity over acetaminophen and uric acid, and a prolonged working stability without the need for maintenance. The electrodes were kept dry between different working days and retained their original activity for more than 1?week. Pd-polycarbonate and Fe-polycarbonate membranes were also developed for comparison purposes.  相似文献   

8.
We report on the successful replication of the smallest pores in anodized aluminum oxide (AAO) via the layer-by-layer (LBL) deposition of polyelectrolytes to date to yield free-standing, open nanotubes with inner and outer diameters (±2σ) down to 37 ± 4 and 52 ± 19 nm, respectively. This work is based on the fabrication of defined arrays of highly regular nanopores by anodic oxidation of aluminum. Pores with pore diameters between 53 ± 9 and 356 ± 14 nm and interpore distances between 110 ± 3 and 500 ± 17 nm were obtained using an optimized two-step anodization procedure. 3-(Ethoxydimethylsilyl)propylamine-coated pores were replicated by alternating LBL deposition of poly(styrenesulfonate) and poly(allylamine). The detrimental adsorption of polyelectrolyte on the top surface of the template that typically results in partial pore blocking was eliminated by controlling the surface energy of the top surface via deposition of an ultrathin gold layer. The thickness of the deposited LBL multilayer assembly at the pore orifice agreed to within the experimental error with the thicknesses measured by variable angle spectroscopic ellipsometry and atomic force microscopy (AFM) for layers assembled on flat substrates. The selective dissolution of the alumina template afforded free-standing, open polymer nanotubes that were stable without any cross-linking procedure. The nanotubes thus obtained possessed mean outer diameters as small as 52 nm, limited by the size of the AAO template.  相似文献   

9.
The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings.  相似文献   

10.
Titanium oxide nanotubes prepared by anodization have received considerable attention in the biomaterials domain. The objective of this study was to demonstrate the electrochemical behavior of different diameter TiO(2) nanotube layers on titanium in phosphate buffered saline (PBS) and Dulbecco's minimum essential medium+10% fetal calf serum (D-FCS) using open circuit potentials (OCP), electrical impedance spectroscopy (EIS), and a potentiodynamic polarization test. The results showed that the nanotubes had higher OCP, higher resistance of the inter barrier layer (R(b)), and lower I(pass) in the two test solutions compared to the smooth Ti, especially the 30 nm diameter nanotubes. The corrosion resistance of the nanotubes in D-FCS was higher than in PBS because of protein adsorption from the D-FCS solution as suggested by scanning electron microscope (SEM) images. In addition, protein aggregates of 30 nm diameter nanotubes caused the model of EIS spectra to transform from two-layer to three-layer. The corrosion behavior of the nanotubes for use as a dental implant material is discussed.  相似文献   

11.
合成了晶态层状有机-无机多功能材料苯乙烯基膦酸-磷酸氢锆(α-ZPPVPA),并研究了正丁胺(BA)对α-ZPPVPA的插层性能。用元素分析、XRD、IR、TG、SEM和TEM等分析方法对α-ZPPVPA及其插层化合物α-ZPPVPA-BA进行了结构表征和形貌分析。结果表明,正丁胺成功地插入了α-ZPPVPA层板之间,层间距为2.41 nm,正丁胺的插入使α-ZPPVPA的层间距(1.66 nm)增大了0.75 nm,插入的正丁胺在α-ZPPVPA中呈双分子层排列,且苯乙烯基侧链不饱和双键的存在不影响α-ZPPVPA与正丁胺的插层反应。  相似文献   

12.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   

13.
透明TiO2纳米管/FTO电极制备及表征   总被引:5,自引:3,他引:2  
采用射频磁控溅射方法在透明导电玻璃(FTO)上沉积纯钛薄膜, 室温条件下在H3PO4+HF电解液中通过恒压阳极氧化方法得到TiO2纳米管阵列, 并通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、UV-Vis透射光谱以及光电化学的方法对纳米管阵列进行了表征. 研究表明, 在电压为20 V、氧化时间为50 min时, 钛薄膜转化为TiO2纳米管阵列, 管长约为380 nm, 内径约为90 nm, 管壁约为15 nm; 再经过500 ℃空气热处理6 h之后得到锐钛矿型的TiO2纳米管/FTO透明电极, 在可见光区的平均透过率约为80%, TiO2禁带宽度为3.28 eV, 发生了蓝移, 带尾扩展到2.6 eV; 此外, 对结晶前后的复合电极分别在暗态和紫外光下进行线性扫描和瞬态光电流测试, 结果表明, 结晶的电极表现出更好的光电转换性能; 施加阳极电压和紫外光照射都能够促进TiO2光生载流子有效分离,使电子迅速传至导电玻璃表面通过外电路形成光电流.  相似文献   

14.
Poly(ethyleneimine) (PEI) microcapsules were prepared via the method of glutaraldehyde (GA)‐mediated covalent layer‐by‐layer (LbL) assembly, which utilized GA to cross‐link the adsorbed PEI layer and to introduce free aldehyde group on the surface for the next PEI adsorption on MnCO3 microparticles, followed by core removal. Evidenced by ellipsometry, the PEI multilayers grew nearly linearly along with the layer number and their thickness was controlled at the nanometer scale. The hollow structure, morphology, and wall thickness were characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and confocal laser scanning microscopy (CLSM), revealing that the capsule structure as well as the cut‐off molecular weight of the capsule wall could be tuned by the molecular weight of PEI. This offers a general and novel pathway to fabricate single component capsules with pre‐designed structure (size, shape, and wall thickness) and properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
在掺氟的杂nO2(FTO)导电玻璃衬底上采用射频磁控溅射的方法室温沉积纯Ti薄膜, 以NH4F/甘油为电解液, 经电化学阳极氧化得到结构有序、微米级的TiO2纳米管阵列/FTO复合结构, 并通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)以及光电化学的方法对纳米管阵列进行了表征. 研究表明, 在氩气气压为0.5 Pa, 功率为150 W, 时间为0.5 h条件下在导电玻璃上室温沉积获得钛膜的结构为晶带T型组织, 表面均匀性好且致密度较高; 在电压为30 V下, 随着阳极氧化时间从1 h延长至3 h, 纳米管的管径从50 nm增加到75 nm, 纳米管的长度从750 nm增至1100 nm后减至800 nm, 管壁由平滑变为波纹状; 随氧化电压的升高, 纳米管管径逐渐增大, 而表面覆盖物逐渐减少, 可通过在稀的HF溶液(0.05%(w, 质量分数))中超声清洗去除; 此外, 瞬态光电流测试表明结晶的电极表现出更好的光电转换性能, 紫外光照射下能促进TiO2光生载流子有效分离, 在热处理温度为450 ℃时, 具有较高的光电化学性能.  相似文献   

16.
A well‐defined (PEO‐PS)2‐PLA miktoarm terpolymer ( 1 ) was synthesized by stepwise click reactions of individually prepared poly(ethylene oxide) (PEO), polystyrene (PS, polymerized by atom transfer radical polymerization), and polylactide (PLA, polymerized by ring‐opening polymerization) blocks. As characterized by differential scanning calorimetry and small‐angle X‐ray scattering techniques, the terpolymer self‐assembled into a hexagonal columnar structure consisting of PLA/PEO cylindrical cores surrounded by PS chains. In contrast, the ion‐doped sample ( 1‐Li+ ) with lithium concentration per ethylene oxide = 0.2 exhibited a three‐phase lamellar structure, which was attributed to the microphase separation between PEO and PLA blocks and to the conformational stabilization of the longest PLA chain. The two‐phase columnar morphology before the ion doping was used to prepare a nanoporous material. PLA chains in the cylindrical core region were hydrolyzed by sodium hydroxide, producing nanopores with a pore diameter of about 14 nm. The resulted nanoporous material sank to the bottom in water, because of water‐compatible PEO chains on the walls. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
为认识孔隙度增加对甲醇电氧化的影响,将熔盐法制备的La2O3颗粒与Pt/CNTs(碳纳米管)预混合然后用HClO4溶掉La2O3颗粒,从而增加了Pt/CNTs催化层的孔隙度.扫描电子显微镜(SEM)观察表明,该处理可以形成孔结构.用循环伏安和计时电流实验考察了孔隙度增加对甲醇电氧化的影响,结果表明甲醇电氧化电流可增加57%.分析认为,电流增加的原因是由于多孔催化层中甲醇更易于到达Pt催化剂表面进行电氧化.该研究表明,通过在催化层中预混-溶解La2O3来增加孔隙是一种改善催化层性能的有效方法.  相似文献   

18.
为认识孔隙度增加对甲醇电氧化的影响, 将熔盐法制备的La2O3颗粒与Pt/CNTs(碳纳米管)预混合然后用HClO4溶掉La2O3颗粒, 从而增加了Pt/CNTs催化层的孔隙度. 扫描电子显微镜(SEM)观察表明, 该处理可以形成孔结构. 用循环伏安和计时电流实验考察了孔隙度增加对甲醇电氧化的影响, 结果表明甲醇电氧化电流可增加57%. 分析认为, 电流增加的原因是由于多孔催化层中甲醇更易于到达Pt催化剂表面进行电氧化. 该研究表明, 通过在催化层中预混-溶解La2O3来增加孔隙是一种改善催化层性能的有效方法.  相似文献   

19.
Self-organized TiO2 nanotube arrays with micro-scale length were prepared on fluorine-doped tin oxide (FTO) conducting glass in NH4F/glycerol electrolyte by electrochemical anodization of pure titanium films deposited by radio frequency magnetron sputtering (RFMS) at room temperature. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and photoelectrochemistry methods. The results showed that Ti films prepared at the condition of Ar pressure 0.5 Pa, power 150 W, and 0.5 h at room temperature possessed the zone T model structure with good homogeneity and high denseness. When the anodization time was prolonged from 1 to 3 h at the voltage of 30 V, the pore diameter of TiO2 nanotubes increased from 50 to 75 nm, and the length increased from 750 to 1100 nm and then gradually decreased to 800 nm, while their wall morphology changed from smooth to rough. Also with increasing the anodization voltage, the pore diameter became larger, and the remaining oxide layer reduced, which could be easily removed by ultrasonic-chemical cleaning in 0.05% (w, mass fraction) diluted HF solution. Moreover, the photocurrent response curves and electrochemical impedance spectroscopy (EIS) results indicated that UV-illumination clearly enhanced the effective separation of the electron-hole pairs and the crystallized electrodes from the annealing treatment of as-anodized electrodes at 450 °C exhibited a better photoelectrochemical performance.  相似文献   

20.
Serum albumins and polylactic acid (PLA) have been used as bioerodable polymers in the preparation of drug-containing microspheres for parenteral drug delivery. The albumin microsphere may be prepared via either chemical cross-linking or heat denaturation of the protein. Heat-denatured albumin microspheres containing mitomycin C (MMC) have been used in pre-clinical and clinical investigations. Due to the high reactivity of MMC as a bifunctional alkylating agent, a study on the stability of MMC in the albumin and PLA microspheres has been carried out using a high-performance liquid chromatographic (HPLC) method. Human serum albumin (HSA) microspheres were prepared using an emulsion method via either heat denaturation at 120 or 170 degrees C or the use of 0.5 M biacetyl as a cross-linking agent. The PLA microspheres were prepared by an emulsion method at 55 degrees C. HPLC analysis of the HSA microspheres showed that about 37% of MMC was converted to 2,7-diaminomitosene derivatives in microspheres prepared by heat denaturation at 120 degrees C. The degradation increased to 82% when the microspheres were prepared with a denaturation temperature of 170 degrees C. The use of biacetyl as a cross-linking agent in the preparation of HSA microspheres resulted in a complete degradation of the incorporated MMC. Biacetyl was found to interact with MMC leading to the formation of 7-aminomitosene derivatives. In contrast to the albumin system, MMC may be incorporated into PLA microspheres without degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号