首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

2.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

3.
TiO2 nanoparticles have been prepared by simple chemical precipitation method and annealed at different temperatures. The as-prepared TiO2 are amorphous, and they transform into anatase phase on annealing at 450 °C, and rutile phase on annealing at 900 °C. The X-ray diffraction results showed that TiO2 nanoparticles with grain size in the range of 21–24 nm for anatase phase and 69–74 nm for rutile phase have been obtained. FESEM images show the formation of TiO2 nanoparticles with small size in structure. The FTIR and Raman spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increase of annealing temperature.  相似文献   

4.
This work presents the annealing temperature effect on the properties of mercury (Hg)-doped titanium dioxide (TiO2). Thin films and polycrystalline powders have been prepared by sol-gel process. The structure, surface morphology and optical properties, as a function of the annealing temperature, have been studied by atomic force microscopy (AFM), Raman, reflectance and ellipsometric spectroscopies. In order to determine the transformation points, we have analyzed the xerogel-obtained powder by differential scanning calorimetry (DSC). Raman spectroscopy shows the crystalline anatase and rutile phases for the films annealed at 400 °C and 1000 °C respectively. The AFM surface morphology results indicate that the particle size increases from 14 to 57 nm by increasing the annealing temperature. The complex index and the optical band gap (Eg) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreases by increasing the annealing temperature.  相似文献   

5.
In this work, structural investigations of TiO2 thin films doped with Tb at the amount of 0.4, 2 and 2.6 at.% have been outlined. Thin films were deposited on Si and SiO2 substrates by high energy reactive magnetron sputtering from mosaic Ti-Tb target. The influence of Tb dopant amount, post-annealing treatment and kind of applied substrate on microstructure has been discussed. Thin films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD analysis revealed the existence of crystalline TiO2 in anatase and rutile forms, depending on Tb amount in examined samples. AFM images show that as-deposited samples with 0.4 at.% concentration of terbium (anatase structure) have bigger crystallites as compared to 2% and 2.6 at.% of Tb (rutile structure). The additional annealing at 1070 K results in a mixed anatase (77%) and rutile (23%) structure.  相似文献   

6.
Undoped and cobalt doped titania (TiO2) thin films have been prepared on Si(1 0 0) monocrystal and quartz substrate using the sol-gel deposition method and annealed in air at 450, 550, 650, 750, 850, 950 and 1050 °C. Several experimental techniques (AFM, XRD, Raman spectroscopy, XRR, EDX, XPS, XAS, UV-VIS spectroscopy) have been used to characterize these films. Further more the degree of light induced hydrophilicity was estimated by measuring the contact angle of a water droplet on the film. Increase of the annealing temperature and in smaller degree also cobalt doping predispose titania crystallite growth. The rutile phase was detected at lower temperatures in the cobalt doped films than in the undoped titania films. Cobalt in the cobalt doped TiO2 was seen to be in Co2+ oxidation state, mainly in CoTiO3 phase when films were annealed at temperatures higher than 650 °C. Cobalt compounds segregated into the sub-surface region and to the surface of the titania, where they formed islands. Cobalt doping red-shifted the fundamental absorption edge further into the visible range, however it did not enhance the light induced hydrophilicity of the thin film surface as compared to the undoped titania thin films.  相似文献   

7.
杨昌虎  马忠权  徐飞  赵磊  李凤  何波 《物理学报》2010,59(9):6549-6555
采用溶胶-凝胶法在石英玻璃衬底上用旋涂法制备了未掺杂、掺杂钇和掺杂镧的TiO2薄膜样品,对样品在700—1100 ℃范围内进行退火处理,并对样品的拉曼光谱进行了分析.分析表明:随着退火温度的升高,未掺杂TiO2薄膜发生了从锐钛矿相经混相最终向金红石相的转换,掺杂钇和掺杂镧对TiO2薄膜的晶相转换起阻碍作用,掺杂镧的阻碍作用更强;稀土掺杂能使TiO2薄膜晶粒细化,并使晶粒内部应力增大从而阻碍晶格振动,掺杂镧比掺杂钇的效果 关键词: 2薄膜')" href="#">TiO2薄膜 稀土掺杂 拉曼光谱 溶胶-凝胶  相似文献   

8.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

9.
Transparent Si-doped TiO2 thin films (Si-TiO2) were deposited on quartz glasses using electron beam evaporation (EBE) and annealed at different temperature in an air atmosphere. The structure and morphology of these films were analyzed by X-ray diffraction (XRD), Raman microscopy (Raman), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Meanwhile the photocatalytic activity of the films has also been evaluated on the basis of the degradation degree of rhodamine B in aqueous solution. Our experimental results suggest that the annealing temperature impact a strong effect on the structure, morphology and photocatalytic activity of Si-TiO2 thin films. Furthermore the enhanced thermal stability of Si-TiO2 films enabled them to elevate the phase transformation temperature of TiO2 from anatase to rutile and enhanced the photocatalytic efficiency.  相似文献   

10.
Titanium dioxide thin films were deposited on three different unheated substrates by unbalanced magnetron sputtering. The effects of the sputtering current and deposition time on the crystallization of TiO2 thin films were studied. The TiO2 thin films were deposited at three sputtering current values of 0.50, 0.75, and 1.00 A with different deposition times of 25, 35, and 45 min, respectively. The surface morphology of the films was investigated by atomic force microscopy (AFM). The structure was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The film thickness was determined by field emission scanning electron microscopy (FE-SEM), and the optical property was evaluated with spectroscopic ellipsometry. The results show that polycrystalline anatase films were obtained at a low sputtering current value. The crystallinity of the anatase phase increases as the sputtering current increases. Furthermore, nanostructured anatase phase TiO2 thin films were obtained for all deposition conditions. The grain size of TiO2 thin films was in the range 10–30 nm. In addition, the grain size increases as the sputtering current and deposition time increase.  相似文献   

11.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

12.
Titanium dioxide (TiO2) thin films doping of various iron ion (Fe3+) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 °C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystallinity decreased when the Fe3+ content increased from 0% to 20%. During the Fe3+ addition to 20%, the phase of TiO2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (Eg) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe3+ content.  相似文献   

13.
The Hg-doped and undoped nano-crystalline TiO2 films on ITO glass substrates surface and polycrystalline powders were prepared by sol-gel dip coating technique. The crystal structure and surface morphology of TiO2 were characterized by means of X-ray diffractometer (XRD), atomic force microscope (AFM), spectrophotometer, Fourier-transform infrared (FTIR), and spectroscopic ellipsometry (SE). The results indicated that the powder of TiO2, doped with 5% Hg in room temperature was only composed of the anatase phase whereas in the undoped powder exhibits an amorphous phase were present. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 400 °C. The average crystallite size of the undoped TiO2 films was about 8.17 nm and was increased with Hg-doping in the TiO2 films. Moreover, the grains distributed more uniform and the surface roughness was greater in the Hg-doped TiO2 films than in the undoped one. Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range (1.95-2.49) and the porosity is in the range (47-2.8). The coefficient of transmission varies from 60 to 90%. SE study was used to determine the annealing temperature effect on the optical properties in the wavelength range from 0.25 to 2 μm and the optical gap of the Hg-doped TiO2 thin films.  相似文献   

14.
TiO2 nanoparticles are prepared by a sol–gel method and annealed both in air and vacuum at different temperatures to obtain anatase, anatase–rutile mixed phase and rutile TiO2 nanoparticles. The phase conversion from anatase to anatase–rutile mixed phase and to rutile phase takes place via interface nucleation between adjoint anatase nanocrystallites and annealing temperature and defects take the initiate in this phase transformation. The samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence spectroscopy (PL). Anatase TiO2 exhibits a defect related absorption hump in the visible region, which is otherwise absent in the air annealed samples. The Urbach energy is very high in the vacuum annealed and in the anatase–rutile mixed phase TiO2. Vacuum annealed anatase TiO2 has the lowest emission intensity, whereas an intense emission is seen in its air annealed counterpart. The oxygen vacancies in the vacuum annealed samples act as non-radiative recombination centers and quench the emission intensity. Oxygen deficient anatase TiO2 has the longest carrier lifetime. Time resolved spectroscopy measurement shows that the oxygen vacancies act as efficient trap centers of electrons and reduce the recombination time of the charge carriers.  相似文献   

15.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

16.
TiO2 thin films are obtained by dc reactive magnetron sputtering. A target of titanium (99.995%) and a mixture of argon and oxygen gases are used to deposit TiO2 films on to silicon wafers (100). The crystalline structure of deposited and annealed film are deduced by variable-angle spectroscopic ellipsometry (VASE) and supported by x-ray diffractometry. The optical properties of the films are examined by VASE. Measurements of ellipsometry are performed in the spectral range O. 72-3.55 e V at incident angle 75^o. Several SE models, categorized by physical and optical models, are proposed based on the 'simpler better' rule and curve-fits, which are generated and compared to the experimental data using the regression analysis. It has been found that the triple-layer physical model together with the Cody-Lorentz dispersion model offer the most convincing result. The as-deposited films are found to be inhomogeneous and amorphous, whereas the annealed films present the phase transition to anatase and rutile structures. The refractive index of TiO2 thin films increases with annealing temperature. A more detailed analysis further reveals that thickness of the top sub-layer increases, whereas the region of the bottom amorphous sub-layer shrinks when the films are annealed at 300℃.  相似文献   

17.
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.  相似文献   

18.
TiO2, which is high in refractive index and dielectric constant, plays an important role in the fields of optics and electronics. In this work, TiO2 films were prepared on glass substrates by the technique of ion beam assisted electron beam evaporation. The films were deposited at 50, 150 and 300 °C, respectively. Then the as-deposited TiO2 films were annealed at 450 °C for 1 h in vacuum atmosphere. Structures and optical properties of TiO2 films were characterized by XRD, SEM, ellipsometry and spectrophotometer. As a result, the structure and the refractive index of films were improved by both the annealing and the increasing of the deposition temperature. The UV-vis transmittance spectra also confirmed that the deposition temperature has a significant effect on the transparency of the thin films. The highest transparency over the visible wavelength region of spectra was obtained at the deposition temperature of 300 °C. The allowed direct band gap at the deposition temperature ranging from 50 to 300 °C was estimated to be in the range from 3.81 to 3.92 eV.  相似文献   

19.
反应溅射法制备TiO2薄膜   总被引:10,自引:0,他引:10       下载免费PDF全文
赵坤  朱凤  王莉芳  孟铁军  张保澄  赵夔 《物理学报》2001,50(7):1390-1395
报道了用反应溅射法制备TiO2薄膜的实验研究.详细研究了氧分压、基底温度和退火温度对成膜结构的影响.制备出了具有金红石和锐钛矿晶体结构的TiO2薄膜.分析了金红石和锐钛矿晶体的形成条件,并对薄膜的表面形貌进行了测量. 关键词: 反应溅射 2薄膜')" href="#">TiO2薄膜  相似文献   

20.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号