首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article reports the effects of heating temperature and composition of nanoparticle multilayer films on the morphology, stability, and optical property of gold nanoisland films prepared by nanoparticle self-assembly/heating method. First, nanoparticle-polymer multilayer films are prepared by the layer-by-layer assembly. Nanoparticle multilayer films are then heated at temperature ranging from 500 °C to 625 °C in air to induce an evaporation of organic matters from the films. During the heating process, the nanoparticles on the solid surface undergo coalescence, resulting in the formation of nanostructured gold island arrays. Characterization of nanoisland films using atomic force microscopy and UV-vis spectroscopy suggests that the morphology and stability of gold island films change when different heating temperatures are applied. Stable gold nanoisland thin film arrays can only be obtained after heat treatments at or above 575 °C. In addition, the results show that the use of nanoparticles with different sizes produces nanoisland films with different morphologies. Multilayer films containing smaller gold nanoparticles tend to produce more monodisperse and smaller island nanostructures. Other variables such as capping ligands around nanoparticles and molecular weight of polymer linkers are found to have only minimal effects on the structure of island films. The adsorption of streptavidin on the biotin-functionalized nanoisland films is studied for examining the biosensing capability of nanoisland arrays.  相似文献   

2.
The thermal decomposition of hydroxyl-terminated generation-4 polyamidoamine dendrimer (G4OH) films deposited on Au surfaces has been compared with decomposition of the same dendrimer encapsulating an approximately 40-atom Pt particle (Pt-G4OH). Infrared absorption reflection spectroscopy studies showed that, when the films were heated in air to various temperatures up to 275 degrees C, the disappearance of the amide vibrational modes occurred at lower temperature for the Pt-G4OH film. Dendrimer decomposition was also investigated by thermogravimetric analysis (TGA) in both air and argon atmospheres. For the G4OH dendrimer, complete decomposition was achieved in air at 500 degrees C, while decomposition of the Pt-G4OH dendrimer was completed at 400 degrees C, leaving only platinum metal behind. In a nonoxidizing argon atmosphere, a greater fraction of the G4OH decomposed below 300 degrees C, but all of the dendrimer fragments were not removed until heating above 550 degrees C. In contrast, Pt-G4OH decomposition in argon was similar to that in air, except that decomposition occurred at temperatures approximately 15 degrees C higher. Thermal decomposition of the dendrimer films on Au surfaces was also studied by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) under ultrahigh vacuum conditions. Heating the G4OH films to 250 degrees C during the TPD experiment induced the desorption of large dendrimer fragments at 55, 72, 84, 97, 127, 146, and 261 amu. For the Pt-G4OH films, mass fragments above 98 amu were not observed at any temperature, but much greater intensities for H(2) desorption were detected compared to that of the G4OH film. XPS studies of the G4OH films demonstrated that significant bond breaking in the dendrimer did not occur until temperatures above 250 degrees C and heating to 450 degrees C caused dissociation of C=O, C-O, and C-N bonds. For the Pt-G4OH dendrimer films, carbon-oxygen and carbon-nitrogen bond scission was observed at room temperature, and further decomposition to atomic species occurred after heating to 450 degrees C. All of these results are consistent with the fact that the Pt particles inside the G4OH dendrimer catalyze thermal decomposition, allowing dendrimer decomposition to occur at lower temperatures. However, the Pt particles also catalyze bond scission within the dendrimer fragments so that decomposition of the dendrimer to gaseous hydrogen is the dominant reaction pathway compared to desorption of the larger dendrimer fragments observed in the absence of Pt particles.  相似文献   

3.
In this study, polypyrrole (PPy) films were electrochemically deposited on gold substrates roughened by an electrochemical triangular-wave oxidation-reduction cycles (ORC) in an aqueous solution containing 0.1N KCl. Then the substrates were heated from 25 to 50 °C and the corresponding SERS performances of PPy were observed in situ. The results indicate that the SERS enhancement capabilities of substrates are gradually raised from 25 °C to a maximum at 40 °C and monotonically decreased from 40 to 50 °C. These SERS enhancement capabilities ascribed to the charge transfers from PPy to Au, which are responsible for the chemical effects of SERS mechanisms, are successfully observed via SERS and high resolution X-ray photoelectron spectroscopy (HRXPS) analyses. The variation in content of the oxidized PPy peak of the double peaks in the range of 1000-1150 cm−1 in SERS spectrum obtained on an Au substrate at different temperatures is consistent with its corresponding variation in the SERS intensity of PPy. The variation in content of the oxidized nitrogen of PPy deposited on an Au substrate at different temperatures revealed from an HRXPS analysis also confirms this consistence.  相似文献   

4.
A synthesis strategy to obtain monodisperse hexanethiolate-protected Au38 clusters based on their resistance to etching upon exposure to a hyperexcess of thiol is reported. The reduction time in the standard Brust-Schiffrin two-phase synthesis was optimized such that Au38 were the only clusters that were fully passivated by the thiol monolayer which leaves larger particles vulnerable to etching by excess thiol. The isolated Au38 was characterized by mass spectrometry, thermogravimetric analysis, optical spectroscopy, and electrochemical techniques giving Au38(SC6)22 as the molecular formula for the cluster. These ultrasmall Au clusters behave analogously to molecules with a wide energy gap between occupied (HOMO) and unoccupied levels (LUMO) and undergo single-electron charging at room temperature in electrochemical experiments. Electrochemistry provides an elegant means to study the electronic structure and the chemical stability of the clusters at different charge states. We used cyclic voltammetry and scanning electrochemical microscopy to unequivocally demonstrate that Au38 can be reversibly oxidized to charge states z = +1 or +2; however, reduction to z = -1 leads to desorption of the protecting thiolate monolayer. Although this reductive desorption of thiol from the cluster surface is superficially analogous to electrochemical desorption of planar self-assembled monolayers (SAMs) from macroscopic electrodes, the molecular details of the process are likely to be complicated based on the current view that the thiolate monolayer in clusters is in fact composed of polymeric Au-S complexes.  相似文献   

5.
Through monitoring the evolution of the X-ray diffraction peaks, the phase transformation of PVP-protected Ag and Au nanoparticle deposits (NPDs) on electronic substrates of Cu and Ni upon heating in air was investigated via in situ synchrotron radiation X-ray diffraction. With an increasing temperature, the broad diffraction peak of nano-sized Ag and Au particles with the original average diameters of 4.2 nm and 9.6 nm, respectively, became sharp because of particle coarsening and coalescence. Complex phase transitions among Au, Cu, AuCu(3) and CuO(x) were observed, mainly due to the negative enthalpy of mixing between Au and Cu. The interactions between NPDs and the substrates affected the shift of diffraction peaks to lower angles, caused by thermal expansion and also the temperature for the oxide formation. Compared to Au, Ag NPDs did not form intermetallic compounds with Cu and the formation of copper oxides can also be retarded mainly due to the phase separation feature of the Ag-Cu system.  相似文献   

6.
The multilayer desorption behavior of 2,5-diidothiophene and the dendritic aggregation of photochemical reaction products during the desorption of 2,5-diiodothiophene multilayers have been studied. Like many other aromatic compounds, 2,5-diiodothiophene shows a multilayer desorption behavior different from the typical zeroth-order kinetics, a metastable desorption peak growth at approximately 220 K followed by a thick multilayer peak growth at approximately 235 K. Traditionally, these desorption behaviors have been attributed to the formation of three-dimensional clusters. This paper provides the direct evidence of this clustering process by producing nondesorbing photoreaction products in the multilayer and by imaging their clusters after the multilayer desorption. Oligothiophene species are produced via photochemical reactions of 2,5-diiodothiophene during the multilayer deposition at approximately 180 K in ultrahigh vacuum (UHV). Upon heating the multilayer to room temperature, the oligothiophene species forms into fibrous aggregates with a fractal dimension varying from 1.37 to 1.81 depending on their surface concentration. Using a topographical alteration of the substrate with a repeating pattern, these oligothiophene fibers can be aligned to a certain direction. This may allow in-situ fabrication of aligned conjugated polymer fibers directly on a target substrate.  相似文献   

7.
We report on the finding that absorption of citrate-stabilized Au nanoparticles into microgel/polyelectrolye multilayer thin films results in an increase in the resistance of those films to strain-induced damage in the dry state while maintaining the remarkable self-healing properties of the films following rehydration. Films were fabricated atop elastomeric poly(dimethylsiloxane) substrates by a centrifuge-assisted layer-by-layer technique using anionic hydrogel microparticles (microgels) and cationic linear polymers as the building blocks. Gold nanoparticles were embedded into swollen hydrogel films by a simple immersion method wherein the Coulombic interactions between the anionic Au particles and the polycation are likely important. After drying, the mechanical properties of films were inferred from the observation of cracks/wrinkles formed during stretching of the elastomeric substrate. As-prepared (no Au) hydrogel films revealed the presence of damage perpendicular to the stretching direction (10% strain), as observed previously. However, Au nanoparticle-doped films displayed significantly reduced damage under identical stretching conditions while forming cracks and wrinkles under higher strains (20?C30%). Importantly, all films displayed excellent self-healing behavior upon rehydration regardless of Au content, suggesting that the nanoparticle toughening effect does not interfere with the film mobility required to achieve autonomic repair.  相似文献   

8.
We have studied ion and electron irradiation of self-assembled monolayers (SAMs) of 2-(4'-methyl-biphenyl-4yl)-ethanethiol (BP2, CH3-C6H4C6H4CH2CH2-SH), phenyl mercaptan (PEM, C6H5CH2CH2-SH), and 4'-methyl-biphenyl-4-thiol (BP0, CH3-C6H4C6H4-SH) deposited on Au(111) substrates. Desorption of neutral particles from PEM/Au and BP2/Au was investigated using laser ionization in combination with mass spectrometry. The ion-induced damage of both BP2 and PEM SAMs is very efficient and interaction with a single ion leads to the modification of tens of molecules. This feature is the result of a desorption process caused by a chemical reaction initiated by an ion impact. Both for ions and electrons, experiments indicate that the possibility for scission of the Au-S bond strongly depends on the chemical nature of the SAM system. We attribute the possible origin of this effect to the orientation of the Au-S-C angle or adsorption sites of molecules. The analysis of electron-irradiated PEM/Au and BP2/Au, using ion-initiated laser probing, enabled measurements of the cross section for the electron-induced damage of the intact molecule or specific fragment. Analysis of electron-irradiated BP0/Au by using time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides direct evidence for the quasi-polymerization process induced by electron irradiation.  相似文献   

9.
Bioinert polyelectrolyte multilayers comprised of poly(acrylic acid) and polyacrylamide were deposited on colloidal particles (1.7 microm in diameter) at low pH conditions by layer-by-layer assembly using hydrogen-bonding interactions. The multilayer films were coated uniformly on the colloidal particles without causing any flocculation of the colloids, and the deposited films were subsequently cross-linked by a single treatment of a carbodiimide aqueous solution. The lightly cross-linked multilayer films show excellent stability at physiological conditions (pH 7.4, phosphate-buffered saline), whereas untreated multilayer films dissolved. The multilayer-coated surfaces, both on flat substrates and on colloidal particles, exhibit excellent resistance toward mammalian cell adhesion. With this new solution-based cross-linking method, bioinert H-bonded multilayer coatings offer potential for biomedical applications.  相似文献   

10.
Sawada  Y.  Seki  S.  Sano  M.  Miyabayashi  N.  Ninomiya  K.  Iwasawa  A.  Tsugoshi  T.  Ozao  R.  Nishimoto  Y. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):751-757
Tin-doped indium oxide In2O3 (indium-tin-oxide) transparent conducting films were fabricated on silicon substrates by a dip coating process. The thermal analysis of the ITO films was executed by temperature-programmed desorption (TPD) or thermal desorption spectroscopy (TDS) in high vacuum. Gas evolution from the ITO film mainly consisted of water vapor. The total amount of evolved water vapor increased on increasing the film thickness from approx. 25 to 250 nm and decreased by increasing the preparation temperature from 365 to 600°C and by annealing at the same temperature for extra 10 h. The evolution occurred via two steps; the peak temperatures for 250 nm thick films were approx. 100-120 and 205-215°C. The 25 nm thick films evolved water vapor at much higher temperatures; a shoulder at approx. 150-165°C and a peak at approx. 242°C were observed. The evolution temperatures increased by increasing the preparation and the annealing temperatures except in case of the second peak of the 25 nm thick films. The evolution of water vapor at high temperature was tentatively attributed to thermal decomposition of indium hydroxide, In(OH)3, formed on the surface of the nm-sized ITO particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Oligonucleotides modified by a hexamethylene linker group adsorb on gold electrodes via Au-S bond formation. We have obtained novel data for adsorption of thiol-modified (HS) single-strand HS-10A and double-stranded HS-10AT oligonucleotides and for analogous thiol-free 10A (A = adenine) and 10T (T = thymine) nonspecifically adsorbed as reference molecules. Mercaptohexanol has served as a second reference molecule. The data are based on cyclic and differential pulse voltammetry, interfacial capacitance data, and in situ scanning tunneling microscopy (STM) directly in an aqueous buffer solution, with electrochemical potential control of both the sample electrode and the tip. All the data are based on single-crystal, atomically planar Au(111)-electrode surfaces. The high sensitivity of such surfaces provides accurate HS-10A and HS-10AT electrode coverages on the basis of the reductive desorption of the Au-S bond. The coverage is high and in keeping with dense monolayers of adsorbed HS-10A and HS-10AT in an upright or tilted orientation, with the oligonucleotide backbone repelled from the strongly negatively charged electrode surface. Adsorbed thiol-free 10A only gives a Au(111)-reconstruction peak, while 10T shows a subtle pattern involving pronounced voltammetric adsorption peaks indicative of both nonspecific adsorption via single thymine units and potential-dependent structural reorganization in the surface layer. In situ STM supports these findings at the molecular level. In situ STM of HS-10A discloses large, highly ordered domains at strongly negative sample potentials. Reversible domain formation and disordering could, moreover, be controlled by an electrochemical potential variation in the negative and positive directions, respectively. 10A and 10T did not form ordered adsorbate domains, substantiating that domain formation rests on adsorption of thiol-modified oligonucleotide adsorption in an upright or tilted orientation. The comprehensive, high-resolution information reported may hold prospects for single-molecule electronic conduction and molecular-scale mapping of oligonucleotide hybridization.  相似文献   

12.
Adsorption of ethylene oxide, CH(2)CH(2)O (EtO), on a Au(211) stepped surface was studied by temperature programmed desorption (TPD) and Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS). Ethylene oxide was completely reversibly adsorbed, and desorbed molecularly during TPD following adsorption on Au(211) at 85 K. EtO TPD peaks appeared at 115 K from the multilayer film and 140 and 170 K from the monolayer. Desorption at 140 K was attributed to EtO desorption from terrace sites, and that at 170 K to EtO desorption from step sites. Desorption activation energies and corresponding adsorption energies were estimated to be 8.4 and 10.3 kcal mol(-1), respectively. The EtO ring (C(2)O) deformation band appeared in IRAS at 865 cm(-1) for EtO in multilayer films and when adsorbed in the monolayer at terrace sites. The stronger chemisorption bonding of EtO at Au step sites slightly weakens the bonding within the molecule and causes a small red-shift of this band to 850 cm(-1) for adsorption at step sites. EtO presumably binds via the oxygen atom to the surface, and observation of the EtO-ring absorption band in IRAS establishes that the molecular ring plane of EtO adsorbed at step and terrace sites is nearly upright with respect to the crystal surface plane.  相似文献   

13.
Prevention of nanoparticle coalescence under high-temperature annealing   总被引:2,自引:0,他引:2  
An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.  相似文献   

14.
Multilayers consisting of a water soluble polythiophene derivative and Au nanoparticles have been deposited onto different electrode substrates by means of layer-by-layer deposition technique. The assembly of the films has been performed by taking advantage of the electrostatic interactions between the positively charged imidazolic moiety of the polythiophene chain and the negative charges of citrate ions surrounding Au nanoparticles, as well of the affinity of S to Au. The nanoparticles result stably grafted to the organic matrix. The resulting modified electrodes have been characterised through electrochemical, spectroelectrochemical and microscopic techniques. The results evidenced that a high number of individual nanoparticles is present inside the multilayer. The presence of nanoparticles is of chief importance for most effective charge percolation through the multilayer, as suggested by the responses to electroactive probe species in solution. The electrocatalytic performances of the modified electrodes have been tested with respect to the oxidation of ascorbic acid.  相似文献   

15.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

16.
The degradation of poly-N-vinylimidazole films on copper substrates was studied by Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. Infrared measurements on samples heated at 300°C for 15 minutes revealed that the oxidation of the polymer was accelerated by the copper. X-ray photoelectron spectroscopy showed that a layer of copper oxide was formed on top of the oxidized film. Copper ions were also detected within the polymer layer. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
This study reports a homogeneous and competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte (Au(NP)/PE) coated latex particles prepared by the layer-by-layer (LbL) technique. First, the resonant energy transfer from a layer of fluorescent PEs to Au(NP) in LbL assembled films on planar substrates was investigated. The quenching efficiency (QE) for the planar films depended on the cube of the distance between the two layers. A QE of 50% was achieved at a distance of ca. 15 nm, indicating that the Au(NP)/PE system is suitable for detecting binding/release events for antibodies. A homogeneous, competitive binding immunoassay for biotin was designed based on Au(NP)/PE-coated polystyrene particles of 488 nm diameter as quenching agents for a fluorescein isothiocyanate labeled anti-biotin immunoglobulin (FITC-anti-biotin IgG). Biotin molecules were localized on the Au(NP)/PE-coated latexes by depositing a layer of biotinylated poly(allylamine hydrochloride) (B-PAH), and FITC-anti-biotin IgGs were subsequently bound to the particles through interaction with the biotin on B-PAH. Transmission electron microscopy and quartz crystal microgravimetry confirmed the multilayer formation on latex particles and planar gold surfaces, respectively. The biotin-functionalized Au(NP)/PE-coated latexes terminated by FITC-anti-biotin IgG exhibited a dynamic sensing range of 1-50 nmol. These results indicate that Au(NP)/PE-coated latexes can be readily used as dynamic range tunable sensors.  相似文献   

18.
Nanofriction properties of molecular deposition films   总被引:15,自引:0,他引:15  
The nanofriction properties of Au substrate and monolayer molecular deposition film and multilayer molecular deposition films on Au substrate and the molecular deposition films modified with alkyl-terminal molecule have been investigated by using an atomic force microscope. It is concluded that ( i ) the deposition of molecular deposition films on Au substrate and the modification of alkyl-terminal molecule to the molecular deposition films can reduce the frictional force; (ii) the molecular deposition films with the same terminal exhibit similar nanofriction properties, which has nothing to do with the molecular chain-length and the layer number; (iii) the unstable nanofriction properties of molecular deposition films are contributed to the active terminal of the molecular deposition film, which can be eliminated by decorating the active molecular deposition film with alkyl-terminal molecule, moreover, the decoration of alkyl-terminal molecule can lower the frictional force conspicuously; (iv) the relat  相似文献   

19.
In this report, we describe a versatile photochemical method for cross-linking polymer films and demonstrate that this method can be used to inhibit thin polymer films from dewetting. A bifunctional photoactive molecule featuring two benzophenone chromophores capable of abstracting hydrogen atoms from various donors, including C-H groups, is mixed into PS films. Upon exposure to UV light, the bis-benzophenone molecule cross-links the chains presumably by hydrogen abstraction followed by radical recombination. Photoinduced cross-linking is characterized by infrared spectroscopy and gel permeation chromatography. Optical and atomic force microscopy images show that photocrosslinked polystyrene (PS) thin films resist dewetting when heated above the glass transition temperature or exposed to solvent vapor. PS films are inhibited from dewetting on both solid and liquid substrates. The effectiveness of the method to inhibit dewetting is studied as a function of the ratio of cross-linker to macromolecule, duration of exposure to UV light, film thickness, the driving force for dewetting, and the thermodynamic nature of the substrate.  相似文献   

20.

Multilayers consisting of a water soluble polythiophene derivative and Au nanoparticles have been deposited onto different electrode substrates by means of layer-by-layer deposition technique. The assembly of the films has been performed by taking advantage of the electrostatic interactions between the positively charged imidazolic moiety of the polythiophene chain and the negative charges of citrate ions surrounding Au nanoparticles, as well of the affinity of S to Au. The nanoparticles result stably grafted to the organic matrix. The resulting modified electrodes have been characterised through electrochemical, spectroelectrochemical and microscopic techniques. The results evidenced that a high number of individual nanoparticles is present inside the multilayer. The presence of nanoparticles is of chief importance for most effective charge percolation through the multilayer, as suggested by the responses to electroactive probe species in solution. The electrocatalytic performances of the modified electrodes have been tested with respect to the oxidation of ascorbic acid.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号