首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and properties of photoreactive polyacrylamide thin films suitable for medical devices are presented. Using a solution deposition process, we report on the influences of polymer concentration, substrate residence time in solution and UV illumination upon the film structure, wettability and frictional properties. Ellipsometry, atomic force microscopy and lateral force microscopy show that increasing polymer concentration and illumination increased the film thickness and uniformity. Dynamic contact angles and frictional coefficients of the modified surfaces depend upon the film structure and thickness for films less than 40Å thick. We also demonstrate the potential of lateral force microscopy for investigating tribology at the nanoscale level.  相似文献   

2.
在超高真空(UHV)条件下,用分子束外延(MBE)方法,通过对生长过程中蒸发速率和衬底温度等参数的控制,可以避免C60分子在Si(111)-7×7重构表面多层生长时团聚岛的形成,得到了逐层生长的C60多层膜.同时利用超高真空扫描隧道显微镜(UHV-STM)对这种多层膜结构进行了观察并对这种现象产生的机理做了分析,测定了不同层数C60薄膜的黏附力和摩擦力曲线,发现分子层数对薄膜的摩擦性质有显著影响,随着沉积层数的增加,样品的摩擦力明显降低,摩擦系数也有降低的趋势.由于分子层数的增加导致C60分子转动程度增强,本文得出结论,摩擦力的降低是由C60分子的转动引起的,C60分子在这里充当了“纳米滚动轴承”,即C60分子的转动为微观结构提供了能量耗散通道.  相似文献   

3.
A novel polysiloxane-containing self-assembled dual-layer film was grafted onto Au surface with a simple three-step method. Firstly, (3-mercaptopropyl)trimethoxysilane (MPTMS) molecules were self-assembled on Au surfaces through S–Au bond followed by hydrolysis and condensation, then the octadecyltrichlorosilane molecules were attached to the resultant hydroxyl terminated surface via the Si–O–Si bonds. The structure and morphology of the film were characterized by means of contact angle measurement, ellipsometry, attenuated total reflectance Fourier transformed infrared spectra, and atomic force microscopy. The resistant ability of charge transfer in the film forming process was detected by electrochemical techniques. Using force–volume technique, we investigated how the different surface chemical groups influence the surface adhesion properties. The nano-friction properties of the as-prepared films were investigated by frictional force microscopy. The results indicated that the dual-layer film fabricated via the hydrolyzation of MPTMS underlayer had significantly less friction. Moreover, compared to the self-assembled monolayer of octadecane thiol, the resultant dual-layer film showed much less wear. This improvement was mainly ascribed to the existence of the network of lateral cross-linked polysiloxane layer within the film which can enhance the stability of the film.  相似文献   

4.
The molecular dynamics simulation model of nanoindentation is proposed in order to study the mechanical and structural deformation properties of an ultrathin MMA (methyl methacrylate) film on a Au(111) surface. First, the significant differences in the structural arrangement of MMA thin films with different thicknesses are observed. Two layers are apparent in the thinnest MMA thin film next to the Au(111) surface, while three layer structures are apparent in the thicker film. Second, this study examines the indentation tip that penetrates the MMA thin film into the Au(111) substrate in order to understand the influence of the interface on the properties and deformation behavior in both the thin film and substrate. The result shows that the indentation force is influenced both by the layer structure and by the thickness of the MMA film. The thinnest case exhibits different deformation behavior from that of the thicker cases. In addition, the deformation of MMA molecules becomes significant at the interface between the MMA film and the Au(111) surface with the increase of film thickness, and detailed deformation behavior of the Au surface for different thicknesses of MMA film is reported in this paper. Finally, both the rigid and the active models for the indentation tip are utilized in the simulation to examine the interaction differences between the tip and the film and the deformation mechanism.  相似文献   

5.
We measure frictional properties of liquid-expanded and liquid-condensed phases of lipid Langmuir-Blodgett monolayers by interfacial force microscopy. We find that over a reasonably broad surface-density range, the friction shear strength of the lipid monolayer film is proportional to the surface area (42-74 A2/molecule) occupied by each molecule. The increase in frictional force (i.e., friction shear strength with molecular area can be attributed to the increased conformational freedom and the resulting increase in the number of available modes for energy dissipation.  相似文献   

6.
A unique molecular junction design is described, consisting of a molecular mono- or multilayer oriented between a conducting carbon substrate and a metallic top contact. The sp2 hybridized graphitic carbon substrate (pyrolyzed photoresist film, PPF) is flat on the scale of the molecular dimensions, and the molecular layer is bonded to the substrate via diazonium ion reduction to yield a strong, conjugated C-C bond. Molecular junctions were completed by electron-beam deposition of copper, titanium oxide, or aluminium oxide followed by a final conducting layer of gold. Vibrational spectroscopy and XPS of completed junctions showed minimal damage to the molecular layer by metal deposition, although some electron transfer to the molecular layer resulted in partial reduction in some cases. Device yield was high (>80%), and the standard deviations of junction electronic properties such as low voltage resistance were typically in the range of 10-20%. The resistance of PPF/molecule/Cu/Au junctions exhibited a strong dependence on the structure and thickness of the molecular layer, ranging from 0.13 ohms cm2 for a nitrobiphenyl monolayer, to 4.46 ohms cm2 for a biphenyl monolayer, and 160 ohms cm2 for a 4.3 nm thick nitrobiphenyl multilayer. Junctions containing titanium or aluminium oxide had dramatically lower conductance than their PPF/molecule/Cu counterparts, with aluminium oxide junctions exhibiting essentially insulating behavior. However, in situ Raman spectroscopy of PPF/nitroazobenzene/AlO(x)/Au junctions with partially transparent metal contacts revealed that redox reactions occurred under bias, with nitroazobenzene (NAB) reduction occurring when the PPF was biased negative relative to the Au. Similar redox reactions were observed in PPF/NAB/TiO(x)/Au molecular junctions, but they were accompanied by major effects on electronic behavior, such as rectification and persistent conductance switching. Such switching was evident following polarization of PPF/molecule/TiO2/Au junctions by positive or negative potential pulses, and the resulting conductance changes persisted for several minutes at room temperature. The "memory" effect implied by these observations is attributed to a combination of the molecular layer and the TiO2 properties, namely metastable "trapping" of electrons in the TiO2 when the Au is negatively biased.  相似文献   

7.
Novel flexible NH3 gas sensors were formed by the in situ self-assembly of polypyrrole (PPy) on plastic substrates. A negatively charged substrate was prepared by the formation of an organic monolayer (3-mercapto-1-propanesulfonic acid sodium salt—MPS) on a polyester (PET) substrate using a pair of comb-like Au electrodes. Two-cycle poly(4-styrenesulfonic acid) sodium salt/poly(allylamine hydrochloride) (PSS/PAH) bilayers (precursor layer) were then layer-by-layer (LBL) deposited on an MPS-modified substrate. Finally, a monolayer of PPy self-assembled in situ and PPy multilayer thin films self-assembled LBL in situ on a (PSS/PAH)2/MPS/Au/Cr/PET substrate. The thin films were analyzed by atomic force microscopy (AFM). The effects of the precursor layer (PSS), the deposition time of the monolayer of PPy and the number of PPy multilayers on the gas sensing properties (response) and the flexibility of the sensors were investigated to optimize the fabrication of the film. Additionally, other sensing properties such as sensing linearity, reproducibility, response and recovery times, as well as cross-sensitivity effects were studied. The flexible NH3 gas sensor exhibited a strong response that was comparable to or even greater than that of sensors that were fabricated on rigid substrate at room temperature.  相似文献   

8.
Compositionally mixed, self-assembled monolayers (SAMs) derived from 16,16,16-trifluorohexadecanethiol and a normal alkanethiol, either hexadecanethiol or pentadecanethiol, were formed on Au(111) substrates. The relative composition of the films was determined using X-ray photoelectron spectroscopy and was found to approximately equal the equimolar composition of the isooctane solution from which they were formed. The frictional properties of the mixed films were measured on the nanometer scale using atomic force microscopy and were observed to decrease when the chain length of the CH(3)-terminated component was shortened by one methylene unit (i.e., when hexadecanethiol was replaced by pentadecanethiol). For comparison, the frictional properties of a mixed-chain-length CH(3)-terminated SAM derived from hexadecanethiol and pentadecanethiol in a 1:1 ratio was also examined. In contrast to the mixed CF(3)/CH(3) system, the latter mixed-chain-length system exhibited relatively higher friction when compared to single-component SAMs derived solely from either hexadecanethiol or pentadecanethiol. For both types of mixed films, the change in frictional properties that occurs as a result of modifying the position of neighboring terminal groups with respect to the surface plane is discussed in terms of the influence of local packing environments on interfacial energy dissipation (friction).  相似文献   

9.
Small lattice mismatches and gas-phase deposition are typically used for growing epitaxial films on single-crystal substrates. A 1-μm thick film of PbS can be epitaxially electrodeposited onto a Au (100) single crystal. The large lattice mismatch (45.5 %) between Au and PbS is accommodated by the formation of a coincidence lattice, in which the epitaxial film is rotated by 45 degrees relative to the substrate. The coincidence lattice reduces the mismatch to +2.9 %.  相似文献   

10.
Bromophenol blue (BPB) was electropolymerized onto a Au substrate. The effects of voltammetric cycle number, BPB concentration, and pH on film thickness, density, optical absorption, and electrochemical susceptibility were evaluated, and favorable deposition conditions were identified. Quantitative measurement of the film mass via quartz crystal microbalance enabled determination of the molar volume and revealed a strong dependence of film density with deposition pH. Finally, electrochemical control of the optical properties of BPB films was demonstrated via in situ spectroelectrochemistry. We believe this is the first demonstration of electropolymerization of pure BPB on Au, and thus the first demonstration of poly(BPB) as an electrochemically switchable optical coating.  相似文献   

11.
Evolution of surface features and optical band gap of ZnO thin films deposited on different NiO/Si(100) are reported. In order to create different initial microstructure, we first deposited NiO film on Si(100) at 3 different temperatures (400°C, 650°C, and 700°C) by pulsed laser deposition. These NiO/Si(100) films are used as substrate for the deposition of ZnO films. Combining the results obtained from grazing incidence X‐ray diffraction, atomic force microscope, and UV‐Visible characterization, our study indicated that the microstructure of the substrate takes the important role in dictating properties of the film. Our study also indicated that one needs to choose appropriate synthesis condition to achieve good quality ZnO films.  相似文献   

12.
We report the characterization of Firpic (iridium(III)bis[4,6‐di‐fluorophenyl]‐pyridinato‐N,C2,]picolinate) organic thin film prepared by vacuum deposition to provide a systematic route to organic film quantification. To analyze the characteristics of thin Firpic films on a Si substrate, various techniques such as XPS, Fourier transform infra‐red (FT‐IR) spectrometer, and atomic force microscopy (AFM) are utilized. The Firpic films remain stable without surface morphological or compositional change during deposition and after exposure to X‐ray irradiation or atmospheric environment, for which qualities these films are believed to be an ideal platform as a pure organic thin film. The monotonic increases in FT‐IR and XPS intensities with film thickness are matching well with each other. In particular, from the XPS intensity analysis, the relative atomic sensitivity factors of the present system, electron attenuation length, and molecular density in the organic thin film can be evaluated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We have studied the dynamic structure of thin (approximately a few nanometers) liquid films of a nearly spherical, nonpolar molecule tetrakis(2-ethylhexoxy)silane (TEHOS) by using a combination of atomic force microscopy (AFM) and fluorescence correlation spectroscopy (FCS). Ultra-sensitive interferometer-based AFM was used to determine the stiffness (force gradient) and the damping coefficient of the liquid film. The experiments show oscillations in the damping coefficient with a period of approximately 1 nm, which is consistent with the molecular dimension of TEHOS as well as previous X-ray reflectivity measurements. Additionally, we performed FCS experiments for direct determination of the molecular dynamics within the liquid film. From the fluctuation autocorrelation curve, we measured the translational diffusion of the probe molecule embedded within the fluid film formed on a solid substrate. The autocorrelation function was best fitted with two components, which indicate that the dynamics are heterogeneous in nature. However, the heterogeneity is not as pronounced as had been previously observed for molecularly thin liquid films sandwiched between two solid substrates.  相似文献   

14.
We report the results of a direct comparison of the adhesion, friction, and mechanical properties between alkanethiol self-assembled monolayer films terminated by either CH(3) or CF(3) end groups using both interfacial force (IFM) and atomic force (AFM) microscopies. The purpose of this work is to gain insight into the detailed origins of the differing frictional behavior previously observed with AFM. The IFM results reveal an increased adhesive interaction for the CF(3)-terminated film due to the highly polar nature of the end groups. In agreement with earlier studies, the AFM results show two linear regions with differing frictional slopes for the CH(3)-terminated film but only a single slope for the CF(3)-terminated film. We contrast the differences between these techniques, approximately 100 times smaller tips for the AFM, and discuss the role of the mechanical properties, the increased adhesive interaction, and the amount of disorder present in the film in creating differences in frictional behavior between the two systems. We conclude that increased adhesion for the CF(3)-terminated film plays an important role in the observed differences in frictional behavior, while the differences between the two techniques can be traced to the different tip sizes and the consequent responses to the presence of disorder in the films.  相似文献   

15.
Pentacene films deposited on self-assembled monolayers (SAMs) bearing different terminal functional groups have been studied by reflection-absorption IR, grazing angle XRD, NEXAFS, AFM, and SEM analyses. A film with pentacene molecules nearly perpendicularly oriented was observed on Au surfaces covered with an SAM of alkanethiol derivative of X-(CH2)(n)-SH, with X = -CH(3), -COOH, -OH, -CN, -NH(2), C(60), or an aromatic thiol p-terphenylmethanethiol. On the other hand, a film with the pentacene molecular plane nearly parallel to the substrate surface was found on bare Au surface. A similar molecular orientation was found in thinner ( approximately 5 nm) and thicker (100 nm) deposited films. Films deposited on different surfaces exhibit distinct morphologies: with apparently smaller and rod-shaped grains on clean bare Au surface but larger and islandlike crystals on SAM-modified surfaces. X-ray photoemission electron microscopy (X-PEEM) was used to analyze the orientation of pentacene molecules deposited on a SAM-patterned Au surface. With the micro-NEXAFS spectra and PEEM image analysis, the microarea-selective orientation control on Au was characterized. The ability to control the packing orientation in organic molecular crystals is of great interest in fabricating organic field effect transistors because of the anisotropic nature of charge transport in organic semiconducting materials.  相似文献   

16.
The scaling up of established deposition techniques like pulsed laser deposition (PLD) to larger substrate diameter is a main condition for the technological application of high-Tc superconducting (HTSC) thin films. SNMS depth profiling and RBS have been used to control the homogeneity of film thickness and stoichiometry of Au/YBaCuO/CeO2 thin film systems deposited on 3-inch sapphire wafers by PLD. A systematic dependence has been found for the relative SNMS sensitivity factors (RSF) on the structural state of YBaCuO. Therefore, a calculation of the composition of the epitaxial YBaCuO thin films is not possible using RSF determined from polycrystalline YBaCuO target material. The interdiffusion of thin films and substrate has been investigated in dependence on the deposition temperature by SNMS depth profiling. The obtained homogeneity of film thickness and stoichiometry over the entire 3-inch diameter proofs the suitability of PLD for in-situ deposition of 3-inch wafers by YBaCuO thin film systems for microwave applications.  相似文献   

17.
Mixed monolayer surfactant films of perfluorotetradecanoic acid and the photopolymerizable diacetylene molecule 10,12-pentacosadiynoic acid were prepared at the air-water interface and transferred onto solid supports via Langmuir-Blodgett (LB) deposition. The addition of the perfluoroacid to the diacetylene surfactant results in enhanced stabilization of the monolayer in comparison with the pure diacetylene alone, allowing film transfer onto a solid substrate without resorting to addition of cations in the subphase or photopolymerization prior to deposition. The resulting LB films consisted of well-defined phase-separated domains of the two film components, and the films were characterized by a combination of atomic force microscope (AFM) imaging and fluorescence emission microscopy both before and after photopolymerization into the highly emissive "red form" of the polydiacetylene. Photopolymerization of the monolayer films resulted in the formation of diacetylene bilayers, which were highly fluorescent, with the apparent rate of photopolymerization and the fluorescence emission of the films being largely unaffected by the presence of the perfluoroacid.  相似文献   

18.
This paper reviews the fabrication of organic and metal nanoclusters in polymer matrices by three co-deposition techniques. In particular, the structure and properties of polytetrafluoroethylene (PTFE), polychlortrifluoroethylene (PCTFE), polyparaphenylene sulphide (PPS), polystyrene (PS) and polyparaxylylene (PPX) films, containing gold (Au) and dye clusters are discussed. For the first time, dye-filled polymers and multi-component films, consisting of both Au nanoparticles and dye molecules, dispersed in the PTFE matrix were studied. A low temperature plasma was used for film structure modification. Cluster formation process was studied using optical spectroscopy in situ. Transmission electron microscopy (TEM), atomic force microscopy (AFM) and ellipsometry were used for characterisation of the grown films. During Au-PTFE film growth plasmon band shifted from 460-480 nm to 560 nm. Au cluster diameter was in the 3-7 nm range. Plasma treatment of the vapours led to formation of smaller, but more aggregated clusters. During Au-PPS film deposition a two-step growth mechanism was discovered. At the beginning of film growth the plasmon band at 540 nm appeared, but as thickness increased, the band at 430 nm dominated. Without plasma treatment a disordered mixture was deposited, while with plasma treatment large Au aggregates confined with PPS matrix having plasmon band at 620 nm were formed. Dye cluster formation depends on the dye ability to aggregate, its concentration and the properties of the polymer matrix. But cluster formation can also be tuned by varying the deposition conditions. Laser beam evaporation promoted cluster formation, while plasma treatment and dilution in a polymer matrix prevented cluster formation. In all cases both equilibrium and non-equilibrium film structure can be formed using kinetic factor. Asymmetric molecules with bulky substituents were oriented in polymer matrices by applying an electric field in situ or by corona poling. These molecules did not aggregate even at high dye load. The films exhibited second harmonic generation, which demonstrated chromophore orientation in the polymer matrices.  相似文献   

19.
Evaporated pentacene thin films with thicknesses from several nm to 150 nm on gold and silver substrates have been studied by ultraviolet photoelectron spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). It was found that pentacene thin-film structures, particularly their molecular orientations, are strongly influenced by the metal substrates. UPS measurements revealed a distinct change in the valence band structures of pentacene on Au compared to those on Ag, which is attributed to the different packing between adjacent molecules. Using NEXAFS, we observed 74+/-5 degrees and 46+/-5 degrees molecular tilt angles on Ag and Au, respectively, for all measured thicknesses. We propose that pentacene molecules stand up on the surface and form the "thin-film phase" structure on Ag. On Au, pentacene films grow in domains with molecules either lying flat or standing up on the substrate. Such a mixture of two crystalline phases leads to an average tilt angle of 46 degrees for the whole film and the change in valence band structures. STM and distance-voltage (z-V) spectroscopy studies confirm the existence of two crystalline phases on Au with different conducting properties. z-V spectra on the low conducting phase clearly indicate its nature as "thin-film phase".  相似文献   

20.
An electrochemical method for self-assembling melanin films on the Au(111) surface from melanin aggregates in alkaline media is reported. Electrochemical data combined with scanning tunneling microscopy (STM), atomic force microscopy, and Auger electron spectoscopy show that the amount and structure of the deposited melanin film depend on the potential (E) applied to the electrochemical interface and deposition time. Film formation takes place at a noticeable rate at E = -1.0 V (vs SCE). High-resolution STM images at the early stages of growth show small particles, 5-8 nm in size and 0.3-0.4 nm in height, forming ordered arrays that follow closely the Au(111) topography. The size of the melanin particles increases as the film thickness increases, reaching 150 nm for deposits grown for 16 h. The deposited films are electrochemically active, showing well-defined redox couples preceding the hydrogen evolution reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号