首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
在聚龙一号装置(PTS装置)上开展了系列波形调节实验,成功在负载上输出脉冲上升时间达到600ns、峰值电流大于5.0 MA的电流。聚龙一号装置在同步放电情况(短脉冲模式)下,负载电流的上升时间约90ns,峰值电流约10.0 MA。波形调节通过装置24台激光触发气体开关分时放电、脉冲输出开关短接等技术调整,实现负载上长上升时间的脉冲电流输出。波形调节根据需要实现的电流波形形状,通过全电路模拟计算,调整激光触发气体开关的触发时序和脉冲输出开关状态,在相应负载上输出接近需求的实验波形。聚龙一号装置波形调节实验研究表明,输出电流脉冲的前沿的最大值取决于24台激光触发气体开关最早触发时刻和最晚触发时刻的时间差,该时间差受制于激光触发气体开关的正常触发。激光触发气体开关能否被正常触发,除了取决于进入开关触发间隙的触发激光能量外,还取决于开关充气压力和加载于开关两端的电位差,该电位差与相关两路的渡越时间相关。通过波形调节研究,聚龙一号装置具备在不同实验负载上输出不同上升时间、不同波形形状的脉冲电流的能力。  相似文献   

2.
为了对即将建成的PTS装置的实验能力进行分析,对装置的工作模式及波形调节能力进行了分析。装置具有三种工作模式:短脉冲模式、长脉冲模式和波形调节模式。在不同的工作模式下,装置可以进行不同负载的实验研究。在基本工作模式下,在15 nH负载上输出前沿90 ns、幅值8~10 MA脉冲电流。通过电路模拟,对装置在三种工作模式下预计的负载电流输出进行了分析,短脉冲模式下装置负载电流的上升时间约90 ns,长脉冲模式时约200 ns,波形调节模式时可以达到400 ns。模拟结果表明,通过调节激光触发气体开关的触发方式和脉冲输出开关及装置其他参数,PTS装置可以输出脉冲前沿100~400 ns、波形形状在一定范围可调的强电流脉冲。  相似文献   

3.
针对磁驱动等熵压缩实验对加载电流波形的特殊需求,基于改造后的1MA直线变压器驱动源(LTD)原理性模块,开展了输出电流上升时间调节实验研究。48只开关分为4组,由4根高压电缆引入触发脉冲分别触发,共进行了三组不同电缆长度组合的触发放电实验。结果表明:在±32kV充电电压下,输出电流上升时间(0~100%)可由301.2ns增加至436.0ns,相应的输出电流幅度由294.0kA下降至210.2kA。实验还采用光纤探针阵列测试系统同时对其中40只多间隙气体开关的放电发光过程进行了诊断,获得了相应开关的闭合导通起始时间。基于实验参数,利用PSpice电路模型进行了校验,并对早期触发的支路组对后续触发支路组的影响进行了分析。实验初步验证了LTD模块内部子块通过分时放电实现输出波形调节的能力。  相似文献   

4.
 DPF-300脉冲X射线源的同步触发系统采用三级触发:第一级由初级脉冲产生器触发氢闸流管;第二级由氢闸流管输出脉冲触发多路触发开关;第三级由多路触发开关和触发箱组成,触发主放电场畸变开关。该触发系统中多路触发开关产生负极性脉冲信号,通过耦合电容,到达开关的触发脉冲上升沿,约为40 ns,脉冲半高宽约60 ns,上升陡度大于0.67 kV/ns。能够同时触发40个同轴型场畸变开关,电压工作范围20~40 kV,不同发次触发箱输出的触发脉冲信号时间分散性小于4 ns,同一发次不同开关的放电时间分散性小于20 ns。在工作电压20 kV,主放电开关充0.115 MPa氮气时,整机负载电流达到约1 MA。  相似文献   

5.
介绍了一种基于感应叠加技术的重复频率脉冲源,分析了同轴屏蔽输出结构磁场的分布。实验时,充电电源工作电压为25 kV,脉冲输出重复频率为20 Hz,2个氢闸流管器件参数相差较大,栅极触发时钟存在约5 ns延时。实验结果表明:氢闸流管触发稳定可靠,输出的脉冲前沿及稳定性仍然不受影响,输出脉冲幅值约为50 kV,证明了感应叠加技术应用于气体开关的可行性。  相似文献   

6.
5kHz重复频率氢闸流管触发系统设计   总被引:1,自引:0,他引:1       下载免费PDF全文
根据重复频率脉冲功率系统中大功率开关器件氢闸流管的触发原理,针对选用的VE4141氢闸流管的触发要求,设计了输出频率达到5kHz的氢闸流管触发系统,可以接收光信号和电压信号触发。采用快前沿MOSFET开关产生两路触发脉冲,一路为预触发脉冲,一路为主触发脉冲。预触发脉冲的输出幅度为500~1000V,主触发脉冲的幅度为1000~2000V,两路脉冲之间延时500ns可调。该触发器可通过部分改动应用于其他的大功率开关器件的触发系统。  相似文献   

7.
李海波  齐欣  张文庆  沈莉  黄远  林木楠 《强激光与粒子束》2021,33(10):105003-1-105003-7
针对中国散裂中子源kicker电源的闸流管,研制了基于大电流脉冲预电离和高压脉冲点火原理的双脉冲触发器,提高了闸流管的触发导通稳定性;同时研究了氢流、灯丝电流及预点火电流等参数对闸流管状态的影响;针对闸流管误漏触发现象,研制了基于单稳态及逻辑门电路构成的误漏触发检测电路,能够对闸流管的状态进行准确分析及预判;最后对kicker脉冲电源系统进行了年度分析总结。  相似文献   

8.
基于真空触发开关的导通机理,设计了长间隙真空触发开关导通特性的实验方案。根据高速摄像图片讨论了长间隙真空触发开关的导通过程和影响导通特性的因素。通过实验得到了触发电流对间隙脉冲电流的影响规律:采用上升时间较短且峰值较高的触发电流,能够明显降低主间隙的火花电阻和导通延时,验证了对导通过程的理论预测。  相似文献   

9.
叶明天  王真  龙天骏  周林  李正宏 《强激光与粒子束》2022,34(9):095009-1-095009-4
为研究电脉冲触发真空沿面闪络开关在中、小通流条件下的适用性,基于直接镀铜基板工艺制作了真空沿面闪络开关样件并搭建了开关工作特性测试实验平台。通过实验手段初步研究了开关耐压特性、触发工作特性(触发延时、抖动、工作范围)和寿命特性。实验结果表明:有效间隙7.2 mm的真空沿面闪络开关直流耐压约40 kV;开关在18 kV工作电压下触发导通延时89.9 ns,抖动13.1 ns,开关在1~18 kV工作电压范围内均能可靠触发导通;连续考核约2300次后开关各项特性无明显变化。  相似文献   

10.
 介绍了一种低抖动、快前沿高电压重复率触发器,输出参数为:重复率可达100 pulse/s,输出时延约225 ns,抖动约1 ns,前沿约26 ns,脉宽约70 ns,高阻负载上电脉冲的峰值可达-40 kV,重复率为50 pulse/s时,峰值可达-51 kV,单次工作时的峰值可达-60 kV。该触发器主要由控制单元、高压供电单元与脉冲形成单元构成,脉冲形成单元采用了低电感电容对负载快放电的结构,建立开关为氢闸流管。实验发现,氢闸流管存在微导通状态,开关的通道电阻及维持的时间与开关极间的电势差有关;电势差越高,通道电阻越小,微导通状态维持的时间越长。此外,氢闸流管的导通性能受灯丝加热电源的影响明显,当加热电压较低时,氢闸流管导通缓慢,延时与抖动较大,当加热电压过高时,氢闸流管易于发生自击穿。  相似文献   

11.
利用脉冲火花预电离方式,设计了一种脉冲火花预电离触发的触发管气体开关。开关工作电压等级为100 kV,工作介质采用干燥空气,开关主间隙10 mm,电极材料采用304不锈钢,触发结构设计成盘环嵌套结构。实验结果表明:预电离能够显著减小低工作系数下触发管气体开关的触发时延和抖动。对于ns级快脉冲触发,预电离时刻越早,开关击穿时延和抖动越低。在30 kV/8 ns触发脉冲作用下,脉冲预电离触发的触发管开关在80%工作系数时,平均时延约为40 ns,抖动小于1 ns。  相似文献   

12.
We report on a special trigger discharge for pulsed high-power pseudospark switches. The switch used is a radial three-channel pseudospark switch. For triggering, a cylindrical trigger electrode is inserted into the hollow cathode of the main gap. This electrode acts as a hollow cathode for the dc preionization, while the hollow cathode of the main gap is the anode. A negative high-voltage pulse supplied to the trigger electrode ignites the main discharge. We report the temporal evolution of the trigger discharge observed with a fast camera. This trigger method gives an excellent current distribution among the discharge channels, as can be proven by fast photography. The switch has a delay of 220 ns and a jitter of 15 ns  相似文献   

13.
 设计并调试了闪光二号加速器气体主开关同步触发系统。该系统主要由同步控制部分和高压脉冲形成部分构成。整个触发过程包括同步信号的引出、整形滤波、快速比较电路传输、前级脉冲形成、高压脉冲产生。通过对同步信号的整形处理,解决了发生器电流上的高频信号干扰问题;经过快速比较电路和前级脉冲后,选取了同步信号开始工作的时间点,并形成十几V的触发信号;高压脉冲形成部分主开关采用场畸变结合预电离的方式,该结构的气体开关时间响应为50 ns,抖动小于5 ns,满足使用要求。调试结果表明:该系统输出脉冲电压幅值100 kV,前沿小于10 ns,系统的工作时延440 ns,抖动13.5 ns;可通过增加电缆长度来控制触发信号到达气体开关的时刻,实现气体主开关与Marx发生器的延时同步工作。  相似文献   

14.
基于超快速高压大功率半导体开关、脉冲形成电路以及同心等间距传输的关键技术,提出一种模块化多路同步快脉冲触发源技术方案。设计出在负载阻抗为50Ω时,可同步输出两种快脉冲触发信号:一种幅度大于20V(4路)、脉冲前沿小于820ps、脉冲宽度大于100ns;另一种则是幅度大于100V(4路)、前沿小于1.4ns、脉宽大于100ns;在外触发作用下,触发源系统抖动和脉冲输出同步分散性分别达到2ns和36.6ps。电路结构上充分利用等间距电信号传输的原理,实现了快脉冲触发源模块化的设计。通过实验结果验证了所采用的设计原理及方法的可行性,给出了在外触发脉冲单次和重频(5kHz)作用下该同步快脉冲触发源输出的实验结果。  相似文献   

15.
大电流两电极气体开关研究   总被引:9,自引:6,他引:3       下载免费PDF全文
 由于引燃管难以满足现在能源系统对放电开关承受大电流的要求,因此研制了大电荷转移量两电极气体开关。这种新型气体开关电极间距可调,无触发极,采用同轴结构,并将主电极置于金属腔体内,减少了放电对绝缘支撑的污染。主电极为铜钨合金材料,设计为平顶圆柱状,以提高烧蚀均匀度和热传导效率,减少电极材料喷溅,延长其寿命。绝缘支撑采用碗状结构,提高了机械强度,增加了沿面击穿距离。该开关工作电压达25 kV,放电电流超过100 kA(脉冲宽度600 μs),单次脉冲电荷转移量达50 C。实验结果显示该气体开关触发性能稳定,电极表面烧蚀均匀,多次大电流实验后电极表面保持完好,可应用于强激光能源系统。  相似文献   

16.
GW级Tesla型脉冲源在触发开关技术研究中作为触发脉冲源使用,抖动较大,触发开关工作不稳定,需要为其研制一台触发器以解决这一问题。结合其他使用需求,设计了一台百kV级纳秒脉冲源,该脉冲源采用Tesla变压器结合单筒脉冲形成线结构,进行了Tesla变压器结构、Tesla变压器初次级参数、Tesla开路磁芯与初级电路设计,调试结果为:最高输出电压100 kV,峰值功率250 MW,重复频率1~100 Hz,输出脉冲宽度约4 ns,前沿约1 ns。该脉冲源作为触发器使用,可以将GW级Tesla型纳秒脉冲源抖动由500 ns降低至150 ns,满足触发开关研究需求,还可用于产生超宽谱短脉冲进行辐射。  相似文献   

17.
In a TEA CO2 laser a two-stage spark gap was used to control the predischarge, which produced the ultraviolet-preionization, and to generate a trigger pulse for the Marx bank, which excited the main discharge. The time-sequence of the predischarge and the trigger pulse could be reversed so that the main discharge could commence before the preionization process. This set-up has enabled temporal synchronization on the laser performance, or basically the time delay between the pre- and the main discharges, to be investigated from about − 150 ns to 600 ns.  相似文献   

18.
MOSFET调制器的实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 介绍了MOSFET调制器的基本原理,并对其并联分流和感应叠加两种开关结构进行了实验研究。基于可编辑逻辑器件设计了其触发电路,驱动电路采用高速MOSFET对管组成的推挽输出形式,加快了MOSFET的开关速度。利用Pspice软件对开关上有无剩余电流电路(RCD)两种情况进行仿真,结果表明,加装RCD电路可以有效吸收MOSFET在关断瞬间产生的反峰电压。实验中,电流波形用Pearson线圈测量,用3个MOSFET并联作开关,当电容充电电压为450 V,负载为30 Ω时,脉冲电流13 A,前沿20 ns,平顶约80 ns;用3个单元调制器感应叠加,当电容充电电压为450 A,负载为30 Ω时,脉冲电流强度为40 A,前沿25 ns,平顶约70 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号