首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Stephen M  Krainak M  Riris H  Allan GR 《Optics letters》2007,32(15):2073-2075
We report on the development of a fiber-based laser transmitter designed for active remote sensing spectroscopy. The transmitter uses a master oscillator power amplifier (MOPA) configuration with a distributed feedback diode-laser master oscillator and an erbium-doped fiber amplifier. The output from the MOPA is frequency-doubled with a periodically poled potassium titanium oxide phosphate crystal. With 35 W of single-frequency peak optical pump power, 8 W of frequency-doubled peak power was achieved. The utility of this single-frequency, wavelength tunable, power scalable laser was then demonstrated in a spectroscopic measurement of diatomic oxygen A band.  相似文献   

2.
A high power continuous-wave single-frequency green fiber laser by second-harmonic generation of a Yb-doped fiber amplifier(YDFA)is developed.A linearly polarized single-mode fiber amplifier produces a 60 W infrared laser at 1064 nm with a 103 W incident diode pump laser at 976 nm,corresponding to an optical conversion efficiency of 58%.An external bow-tie enhancement cavity incorporating a noncritically phase-matched lithium triborate crystal is employed for second-harmonic generation.A 33.2 W laser at 532 nm is obtained with a 45 W incident 1064 nm fundamental laser,corresponding to a conversion efficiency of 74%.  相似文献   

3.
We demonstrate a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser.The central wavelength of the single-frequency fiber laser seed is 1 063.8 nm,with a linewidth narrower than 20 kHz and output power of 120 mW.By using two-stage amplification,a single-frequency fiber laser with an output power of 122 W is obtained,and the optical-optical conversion efficiency is 72%.No significant amplified spontaneous emission (ASE) or stimulated Brillouin scattering (SBS) is observed.The output power can be further increased by launching more pump power.  相似文献   

4.
Guo-Quan Qian 《中国物理 B》2022,31(12):124205-124205
A 135 mW single-frequency distributed Bragg reflector fiber laser at 1.95 μm was obtained based on a Tm:YAG ceramic-derived all-glass fiber. The fiber laser achieved an optical signal-to-noise ratio of ~ 77 dB. Moreover, the threshold and linewidth of the single-frequency laser were measured to be 15.4 mW and 4.5 kHz, respectively. In addition, the measured relative intensity noise was less than -140 dB· Hz-1 at frequencies of over 10 MHz. The results show that the as-drawn Tm:YAG ceramic-derived all-glass fiber is highly promising for ~ 2 μm single-frequency fiber laser applications.  相似文献   

5.
张昆  房一涛  余洋  李尧  宋奎岩  张利明  张大勇  赵鸿 《强激光与粒子束》2022,34(3):031001-1-031001-4
报道了一种基于主振荡功率放大结构的全光纤化1064 mm线偏振单频光纤放大器。种子源是一个线宽约为3 kHz的单频光纤激光器。输出功率为50 mW的种子激光经两级掺Yb保偏双包层光纤(光纤纤芯直径分别为10 μm和20 μm)和一级手性耦合纤芯增益光纤放大后,最终获得了输出功率138 W、光束质量M2≤1.2、偏振消光比优于18 dB的高功率单频光纤激光输出。在脉冲调制模式下,获得了峰值功率465 W、脉宽宽度约为500 μs的线偏振单频光纤激光输出。  相似文献   

6.
百瓦级全光纤结构单频掺铥主振荡功率放大器   总被引:2,自引:1,他引:1       下载免费PDF全文
报道了平均功率超过百瓦的单频掺铥全光纤结构主振荡功率放大器。使用线宽小于100kHz、中心波长为1.97μm的单频种子源进行级联放大,主放大器的斜率效率为50%。监测放大器的回光功率和光谱,没有发现受激布里渊散射以及其他非线性效应。通过增加泵浦功率,可以获得更高功率的掺铥单频放大输出。  相似文献   

7.
By using a subring cavity incorporated with a saturable absorber, a stable single-frequency selection is realized in a linear-cavity fiber laser, which is constructed using a broadband fiber mirror and a partial reflectance fiber Bragg grating as the cavity ends. At 1550.33 nm, the laser has an optical signal-to-noise-ratio of >53.28 dB and with linewidth less than 1 MHz. The pumping efficiency is 25% improved by recycling the residual pump power to gain medium. The power stability and wavelength stability have also been studied.  相似文献   

8.
Agger S  Povlsen JH  Varming P 《Optics letters》2004,29(13):1503-1505
We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a single-frequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors' knowledge, this is the first report of a single-frequency DFB fiber laser that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers.  相似文献   

9.
Geng J  Wu J  Jiang S  Yu J 《Optics letters》2007,32(4):355-357
Efficient operation of diode-pumped single-frequency fiber lasers at wavelengths from 1740 to 2017 nm has been demonstrated by using a very short piece of newly developed single-mode active fiber, i.e., heavily thulium-doped germanate glass fiber. At 1893 nm, the single-frequency fiber laser has a pump threshold of 30 mW, a slope efficiency of 35%, and maximum output power of 50 mW with respect to the launched power of single-mode pump diodes at 805 nm. To the best of our knowledge, this is the highest lasing efficiency achieved in single-frequency fiber lasers operating near 2 micro m. Frequency noise of the single-frequency fiber laser at 1893 nm has been characterized and compared with that of single-frequency fiber lasers at 1 and 1.55 micro m.  相似文献   

10.
Liaw  S. K.  Wang  H.  Hsu  K. H.  Lin  S. C.  Chen  N. -K.  Shin  C. S.  Tver’yanovich  Y. 《Laser Physics》2012,22(2):437-440
A nearly single-frequency selection is realized in a linear-cavity fiber laser constructed using a Faraday rotator mirror (FRM) and a partial reflectance fiber Bragg grating (FBG) as the cavity ends. At 1552.46 nm wavelength, the measured optical signal-to-noise-ratio (OSNR) is 58.5 dB with a linewidth less than 400MHz obtained using a subring cavity and a polarization controller as the mode filters. The pumping efficiency is improved by 10% by recycling the residual pump power to the gain medium.  相似文献   

11.
An efficient narrow-linewidth single-frequency(SF) Yb-doped all-fiber master oscillator power amplifier(MOPA)laser operating at 1064.3 nm is demonstrated experimentally.A ring cavity SF fiber laser is used as the seed source for the MOPA system and the Yb-doped fibers are employed as the gain medium or the saturable absorber.The SF operation is observed to be stable without mode hopping.The highest output power of 266 mW is obtained under the 400 mW pump power with the corresponding slope efficiency of 66.2%.The linewidth of the amplified output laser is approximately 1 kHz and its optical signal-to-noise ratio is over 45 dB.  相似文献   

12.
A single-frequency all-fiber laser source operating at 1093 nm with an output power of more than 1 W is developed. A master oscillator-power amplifier configuration that comprises a distributed-feedback fiber laser and an ytterbium-doped fiber amplifier is implemented. Some aspects of the stimulated Brillouin scattering specific to active fiber are discussed.  相似文献   

13.
激光二极管泵浦的高效、单频Nd:YVO4激光器   总被引:2,自引:0,他引:2  
对激光二极管端面泵浦的单频Nd:YVO4激光器进行了研究,研究了不同输出耦合率情况下输出功率随泵浦功率的变化曲线及光-光转化效率随输出耦合率的变化曲线,实验结果与理论分析结果基本一致.当泵浦功率为2.2 W时,得到瓦级单频1064 nm激光输出,最高光-光转化效率为47.2%.  相似文献   

14.
A narrow-linewidth master-oscillator fiber power amplifier system was presented, in which an ultrastable,continuous-wave, single-frequency laser was adopted as the master oscillator and a China-made Yb-doped large-mode-area fiber was used as the power amplifier medium. The system generates single-frequency radiation up to 7.3 W at 1064-nm wavelength with 39% slope efficiency and 26% optical-optical power conversion efficiency. The spectral characteristics as well as the suppression of amplified spontaneous emission were discussed in detail.  相似文献   

15.
We report a master-oscillator fiber power-amplifier system consisting of a diode-pumped monolithic nonplanar ring laser as the master oscillator and a Yb-doped large-mode-area double-clad fiber as the power amplifier. The system emits up to 20.1 W of single-frequency radiation at a wavelength of 1064 nm with diffraction-limited beam quality (M(2)相似文献   

16.
The results on the development of the single-frequency semiconductor laser with external cavity based on a fiber Bragg grating (one-dimensional photonic crystal) formed in a single-mode fiber waveguide are presented. Stable single-frequency lasing at a wavelength of 977 nm with a spectral half width of 0.2 nm is achieved with a laser power output of 350 mW. The temperature dependence of lasing parameters is studied.  相似文献   

17.
A single-frequency pulsed erbium-doped fiber(EDF) laser with master-oscillator power-amplifier configuration at 1 533 nm is developed. A short-cavity,erbium-doped phosphate glass fiber laser is utilized as a seeder laser with a linewidth of 5 kHz and power of 40 mW. The seeder laser is modulated to be a pulse laser with a repetition rate of 10 kHz and pulse duration of 500 ns. The amplifier consists of two pre-amplifiers and one main amplifier. The detailed characteristics of the spectrum and linewidth of the amplifiers are presented. A pulse energy of 116 μJ and a linewidth of 1.1 MHz are obtained. This laser can be a candidate transmitter for an all-fiber Doppler wind lidar in the boundary layer.  相似文献   

18.
We report experimental results on a 96.2 W all-fiberized nanosecond single-frequency masteroscillator power amplifier (MOPA) laser working at 1064 nm. An external modulation fiber laser with average power of 0.5 mW and line width of 20 kHz is used as the seed source. Amplifying the seed laser in four stages, a single-frequency laser with pulse duration of 10 ns and peak power of 816.7 W is obtained. The average output power is up to 96.2 W. Further power-scaling of this MOPA structure can be realized since our experiment is only pump-power limited.  相似文献   

19.
研制了一台全光纤结构主振荡功率放大型掺镱单频光纤激光器。该光纤激光器包括种子激光器和级联放大器两部分。种子激光器是自行搭建的环形腔结构的单频窄线宽光纤激光器。在976 nm半导体激光器泵浦下,能够输出线宽为10 MHz量级、波长为1 079.88 nm的单频光,激光功率为10.02 W,光-光转化效率为58.9%,斜率效率为65.3%。  相似文献   

20.
An all-fiber, single-frequency, linearly polarized, high peak-power, pulsed laser at 1,540 nm for Doppler wind lidar is presented. This laser is composed of a single-frequency, narrow-linewidth external cavity diode laser, and multistage fiber amplifiers. A peak power of 1.08 kW and a pulse width of 500 ns at 10 kHz repetition rate are achieved, which is the highest peak power with a linewidth of 800 kHz in erbium-doped silica fiber to our knowledge. The beam quality of M 2 < 1.3 and a polarization extinction ratio over 16 dB are obtained. This laser will be employed in a compact long-range coherent Doppler wind lidar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号