首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hydrogen production by catalytic reforming of simulated hot coke oven gas (HCOG) with toluene as a model tar compound was investigated in a fixed bed reactor over Ni/Mg(Al)O catalysts. The catalysts were prepared by a homogeneous precipitation method using urea hydrolysis and characterized by ICP, BET, XRD, TPR, TEM and TG. XRD showed that the hydrotalcite type precursor after calcination formed (Ni, Mg)Al2O4 spinel and Ni-Mg-O solid solution structure. TPR results suggested that the increase in Ni/Mg molar ratio gave rise to the decrease in the reduction temperature of Ni2+ to Ni0 on Ni/Mg(Al)O catalysts. The reaction results indicated that toluene and CH4 could completely be converted to H2 and CO in the catalytic reforming of the simulated HCOG under atmospheric pressure and the amount of H2 in the reaction effluent gas was about 4 times more than that in original HCOG. The catalysts with lower Ni/Mg molar ratio showed better catalytic activity and resistance to coking, which may become promising catalysts in the catalytic reforming of HCOG.  相似文献   

2.
Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3−δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon compounds under atmospheric pressure. Under optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 13.3 ml/(cm2·min). By reforming of the toluene and methane, the amount of H2 in the reaction effluent gas was about 2 times more than that of original H2 in simulated HCOG. The Ru-Ni/Mg(Al)O catalyst used in the membrane reactor possessed good catalytic activity and resistance to coking. After the activity test, a small amount of whisker carbon was observed on the used catalyst, and most of them could be removed in the hydrogen-rich atmosphere, implying that the carbon deposition formed on the catalyst might be a reversible process.  相似文献   

3.
Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.  相似文献   

4.
采用共沉淀-浸渍法制备了不同Ni 含量的 Ni/Mg(Al)O 催化剂并用于液化石油气(LPG)的低温水蒸气重整反应. X 射线衍射和程序升温还原结果表明, 在 800 ℃焙烧的 Ni/Mg(Al)O 催化剂中, NiO 与 MgO 反应生成 Mg-Ni-O 固溶体, 还原后形成金属 Ni 纳米颗粒. 详细研究了 Ni 含量(质量分数)、反应温度和水/碳摩尔比(nH2O/nC) 等对催化剂性能的影响. 实验结果表明, 15%Ni/Mg(Al)O 催化剂对 LPG 低温重整反应具有最佳的催化性能. 提高反应温度能显著提高 Ni/Mg(Al)O 催化剂的催化性能. 当nH2O/nC=2时, 在400~500 ℃的温度范围使LPG完全转化的最大反应空速从 28900 mL·h-1·g-1Cat提高到 86800 mL·h-1·g-1Cat. 适当增大水/碳摩尔比有利于 LPG 转化为小分子气体, 但在 LPG 摩尔流量不变的情况下, 反应气中水含量过高会导致 LPG 转化率降低. 反应后催化剂的X射线衍射谱(XRD)和热重分析(TG)结果表明, Ni/Mg(Al)O催化剂优良的催化活性和反应稳定性可归因于催化剂表面Ni晶粒较高的稳定性和抗积炭性能.  相似文献   

5.
CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.  相似文献   

6.
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst.The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS.Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature,and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts.Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ.  相似文献   

7.
MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied.  相似文献   

8.
Ni-based catalysts doped with copper additives were studied on their role in ethanol steam reforming reaction.The effects of Ca content,support species involving Al2O3-SiO2,Al2O3-MgO,Al2O3-ZnO,and Al2O3-La2O3,on the catalytic performance were studied.Characterizations by TPR,XRD,NH3-TPD,XPS,and TGA indicated that catalysts 30Ni5Cu/Al2O3-MgO and 30NiSCu/Al2O3-ZnO have much higher H2 selectivity than 30NiSCu/Al2O3-SiO2,as well as good coke resistance.H2 selectivity for 30Ni5Cu/Al2O3-MgO catalyst was 73.3% at 450℃ and increased to 94.0% at 600 ℃,whereas for 30NiSCu/Al2O3-ZnO catalyst,the H2 selectivity was 63.6% at 450 ℃ and 95.2% at 600 ℃.These Al2O3-MgO and Al2O3-ZnO supported Ni-Cu bimetallic catalysts may have important applications in the production of hydrogen by ethanol steam reforming reactions.  相似文献   

9.
A series of Co/Mg–Al oxide samples,CoMgAl-x(x=(Mg+Co)/Al molar ratio of 1–5),were prepared by the self-combustion method followed by H2reduction.The catalytic performance and stability of the samples were studied in dry reforming of CH4.XRD and H2-TPR characterization results showed that the reduced CoMgAl-x samples mainly consisted of solid solution and spinel phases with cobalt particles.The spinel phases contained Co3O4 and Con Mg1-n Al2O4(0≦n≦1)varying with the(Mg+Co)/Al ratio.The effect of (Mg+Co)/Al molar ratio on the catalytic behavior was investigated in detail and CoMgAl-3 exhibited the highest catalytic activity and stability among the catalysts studied.  相似文献   

10.
The effect of promoter Ce on the catalytic performance of Ni/Al2O3 catalyst for autothermal reforming of methane to hydrogen was investigated. The catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The results indicated that the catalytic performance of the catalysts was improved with the addition of Ce. Ni/Ce30Al70Oδ showed the highest CH4 conversion in operation temperatures ranging from 650 ℃ to 850 ℃. At the same time, the decrease in H2/CO ratio with increasing reaction temperature was consistent with the fact that water-gas shift reaction was thermodynamically unfavorable at higher temperatures. The XRD result indicated that adding Ce to Ni/Al2O3 catalyst prevented the formation of NiAl2O4 and facilitated the formation of NiO. The formation of NiO increased the number of active sites, resulting in higher activity. Comparing the TPR profiles of Ni/Ce30Al70Oδ with Ni/Al2O3, it could be clearly observed that with the addition of Ce, the total reduction peak areas in the middle and low temperatures increased. It was most probably that the addition of Ce inhibited the stronger interaction between Ni and Al2O3 to form the phase of NiAl2O4, and favored the formation of the strong interaction between NiO species and CeO2. Therefore, the addition of Ce to the Ni/Al2O3 catalyst increased the active surface that promoted the activity of the catalyst.  相似文献   

11.
A series of x (Fe, Ni)/Al2O3 catalysts (x = 2--12 wt%) were prepared using incipient wetness method and studied for the conversion of synthesis gas to light olefins. 6 wt%(Fe, Ni)/Al2O3 catalyst was found to be the optimal catalyst for the production of C2--C4 olefins. The effects of calcination behaviors and operational conditions on the catalytic performance of the optimal catalyst were investigated. The best operational conditions were molar feed ratio H2/CO = 2/1, T = 260 ℃, gas hourly space velocity (GHSV) = 2600 h-1 and the pressure of 3 bar. Characterizations of both precursors and catalysts were carried out using X-ray diffraction (XRD), temperature-programmed reduction (TPR), scanning electron microscopy (SEM), N2-adsorption-desorption measurement, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).  相似文献   

12.
采用分步浸渍法制备了MgO-Al2O3负载的Ni基催化剂, 并运用N2吸附、载射线衍射(XRD)、透射电子显微镜(TEM)等手段进行表征. 该催化剂用于甲苯或萘为焦油模拟化合物的高温焦炉煤气(COG)的常压加氢裂解反应, 并考察了H2浓度、H2S对催化剂活性的影响. 结果表明: 催化剂还原后, 表面形成均匀分散、直径为8-14 nm的金属Ni纳米颗粒; 在较低的水碳摩尔比(nH2O/nC=0.28)时, 甲苯就能完全转化并选择性地加氢裂解形成CH4, 测试的时间内(480 min), 催化剂没有明显的失活和积炭现象, 显示出好的反应活性、稳定性和耐硫能力. 制得的Ni/MgO-Al2O3催化剂有望应用于较低水含量(10%-15%(φ, 体积分数))的高温焦炉煤气中焦油的直接转化.  相似文献   

13.
 采用共沉淀-水热法合成了一系列 Ni/MgAl(O) 催化剂. 用甲苯和萘的混合物作为焦油模型化合物, 在固定床反应器上研究了该催化剂直接催化转化具有较低水蒸气/碳摩尔比的高温焦炉煤气中焦油为小分子气体的反应. 考察了催化剂组成、水蒸气/碳摩尔比和反应条件等对催化剂性能的影响. 结果表明, Mg/Al 摩尔比为 3 时 Ni/MgAl(O) 催化剂表现出最优的催化性能. 在 700~800 oC 和水蒸气/碳摩尔比为 0.68 的反应条件下, 15%Ni/Mg3Al(O) 催化剂能将甲苯和萘完全转化为 CO 和 CH4 等小分子气体. 在反应气中引入 0.05% H2S(摩尔分数) 气体的实验表明, 该催化剂在焦油催化转化反应中具有较好的抗硫能力. 另外, 在催化剂中加入少量 Pt 助剂能显著提高催化剂活性.  相似文献   

14.
采用共沉淀-浸渍法并在较低温度(400~700℃)下焙烧制备了镁铝混合氧化物(MgmAl)负载的Ni催化剂.X射线衍射和程序升温还原结果表明,Ni物种高度分散于催化剂表面,没有形成尖晶石NiAl2O4.在650℃可被还原成金属Ni纳米晶粒,在400℃和较低水/碳摩尔比(S/C=2)条件下表现出较好的催化液化石油气(LP...  相似文献   

15.
Ni/ZrO2催化剂上甲烷水蒸气重整反应的研究   总被引:4,自引:2,他引:4  
研究了Ni/ZrO2催化剂对甲烷水蒸气重整制合成气的反应性能。考察了催化剂的还原温度、载体焙烧温度以及反应温度、原料配比和空速等对催化剂性能的影响。利用XRD、TEM、XPS等手段对催化剂的织构形貌进行了表征。研究表明,Ni/ZrO2催化剂用于甲烷水蒸气重整制合成气不仅具有较高的活性,也具有较好的稳定性。水蒸气比增加,CH4转化率增大、CO选择性下降。CH4转化率及CO选择性均随空速增大而下降。使用10%Ni/ZrO2催化剂,在650 ℃、空速1.984×104 h-1、原料气配比H2O∶CH4∶N2=2∶1∶2.67的条件下,获得CH4转化率85%、CO选择性70%的结果。  相似文献   

16.
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.  相似文献   

17.
傅利勇  吕绍洁 《分子催化》1999,13(5):367-372
在CH4、CO2 催化氧化制合成气反应中, Ni/Al2O3 催化剂在高温下生成NiAl2O4 尖晶石,是导致催化剂失活的一个重要因素. 通过向载体(Al2O3)中添加各种氧化物, 使得催化剂的抗氧化性能得到改善. 并运用TPR、XRD对催化剂进行表征, 发现催化剂的抗氧化性顺序为: Ni/CaO-Al2O3 > Ni/MgO-Al2O3 > Ni/CeO2-Al2O3 > Ni/La2O3-Al2O3 > Ni/Y2O3-Al2O3 > Ni/TiO2-Al2O3> Ni/Al2O3> Ni/Fe2O3-Al2O3.  相似文献   

18.
A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method. The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a continuous flow fixed-bed micro-reactor. The stability of the catalyst was tested at 800 ℃. The results indicated that 10 wt%Ni/SBA-15 catalyst exhibited the highest catalytic activities for the combined reforming of the simulated biogas to syngas. Under the reaction conditions of the feed gas molar ratios CH4/CO2/O2/H2O = 2/1/0.6/0.6, GHSV = 24000 ml•g{cat}-1\cdoth-1 and the reaction temperatureT = 800 ℃, the conversions of CH4 and CO2 were 92.8% and 76.3%, respectively, and the yields of CO and H2 were 99.0% and 82.0%, respectively. The catalytic activities of the catalyst did not decrease obviously after 100 h reaction time on stream.  相似文献   

19.
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2- and S2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.  相似文献   

20.
NiO/LaMnO3催化剂用于乙醇水蒸气重整反应   总被引:3,自引:0,他引:3  
采用柠檬酸络合-浸渍法制备了NiO/LaMnO3钙钛矿型复合氧化物催化剂并将其应用于乙醇水蒸汽重整制氢反应, 考察了NiO含量、焙烧温度对催化剂性能的影响, 采用XRD、TPR和热分析等手段对催化剂进行了表征. 结果表明, 该催化剂具有高活性、高选择性和良好的稳定性. 催化剂中的NiO含量和焙烧温度对催化性能有显著影响. 在原料气体积组成为20%(体积分数, φ) C2H5OH 和水以及80%(φ)N2, 其中水醇摩尔比为3:1, 空速为80000 mL·h-1·g-1 cat, 反应温度为400 ℃时, 15%(质量分数, w)的NiO/LaMnO3上, 乙醇转化率接近100%. 关联催化剂活性和TPR及XRD实验结果, 发现催化剂的高活性源于由催化剂前驱体中进入钙钛矿型复合氧化物晶格中的镍离子被还原所得的金属镍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号