首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
论证了只要合适选择中间界面层的弹性常数, 各向异性线弹性固体在远场均匀反平面剪切应力作用下三相椭圆夹杂内椭圆上仍存在均匀应力场. 讨论了内外两椭圆除过其中心相同外无其它任何几何限制条件. 所给出的数值算例显示出该结论的正确性. 该方法为纤维增强复合材料的设计提供了一条新途径.  相似文献   

2.
各向异性介质中弹性波的数值模拟   总被引:5,自引:2,他引:3  
提出了一种非均匀各向异性介质中弹性波传播的数值模拟算法。该方法可以灵活地运用于具有任意地表形状、内部孔洞、固液边界和不规则内部交界面的介质情况,另外,该方法自然满足复杂几何边界的自由表面条件。这种基于三角形和四边形离散网格的算法使用的是围绕每个节点的积分平衡方程,而不是其它有限差分法中使用的各个节点满足的弹性动力学的微分方程。该文工作是非均匀各向同性介质中弹性波传播格子法研究的继续。除了研究各向异性介质中波的传播以外,还给出了一种能够省时的四边形网格的格子法。  相似文献   

3.
研究了线性温变作用下椭圆夹杂的热弹性问题。通过构造辅助函数,将复变函数的分区全纯函数理论,Riemann边值问题和Cauchy型积分相结合,求得各分区之间的解析关系,从而获得了无穷远均匀加载和线性温变共同作用下椭圆夹杂平面热弹性场的封闭形式解。从本文解答的特殊情况可直接得到已有的若干结果,并可得到一些具有实际意义的新结果。本文发展的分析方法,为求解复杂多连通域的平面热弹性问题提供了一条有效途径。  相似文献   

4.
本文引用加权残数法建立了各向异性介质内含任意形式异质夹杂时的散射问题的边界积分方程式,导出了相应的辐射条件,计算了内含圆柱体,椭圆柱体、界面裂纹情形下对SH 波的散射位移场、应力场以及散射横截面.数值结果表明本方法用于解答各向异性介质的弹性波散射问题具有良好的精度和应用前景.  相似文献   

5.
何福保 《力学季刊》1989,10(3):11-18
经典的弹性理论主要是研究均匀和各向同性的力学问题。自纳维和哥西在1820年提出弹性理论的基本问题开始,到十九世纪已形成了较为系统而完整的理论,典型的代表性文献是著名的Love著作。各向异性弹性力学的发展与生产发展紧密结合的,本世纪以来,随着航空工业的兴起,胶合木板等新型材料在工业上日益广泛的应用,刺激和推动了这个学科的发展。四十年代中期Lekhnitskii首先总结了苏联学者在三十年代对各向异性体的平面问题  相似文献   

6.
文(1)曾提出一种将固体力学矢量方程进行退化,用来模拟计算场问问题标量泊松方程的新方法。对各向同性场介质必须用各向异性弹性材料来模拟。本文进一步给出了对三各向异性场介质的模拟关系,它适用于非均匀各向异性场介质,甚至其主轴方向也随位置主烨的情况,因而可用上接计算较复杂的各向异性问题。这一功能甚至超过了某些场分析专用程序。  相似文献   

7.
通过引进微缺陷相互作用张量,建立了一个二维情况下考虑微缺陷(微裂纹或微孔洞)间相互作用的损伤固体有效弹性性质的一般理论模式模型中考虑了微缺陷的几何形状、取向分布和空间分布所造成的有效柔度张量的各向异性和材料中微缺陷之间的相互作用所引起的损伤柔度张量的高阶效应针对微椭圆孔、微圆孔和微裂纹问题,求得了相互作用张量的解析形式  相似文献   

8.
基于广义胡克定律及混和变量弹性波方程,解析求得各层介质位移位,应力传播矩阵,给出了直角坐标系各向异性层状介质中弹性波的传播矩阵解法,该方法适用于非轴对称各向异性和点源作用,较好地解决了数值计算中有效数字精度损失问题,数值结果表明,计算效率,准确性及稳定性均较好。  相似文献   

9.
基于广义胡克定律及混和变量弹性波方程,解析求得各层介质内位移、应力传递矩阵,给出了直角坐标系下各向异性层状介质中弹性波的传播矩阵解法.该方法适用于非轴对称各向异性和点源作用,较好地解决了数值计算中有效数字精度损失问题.数值结果表明,计算效率、准确性及稳定性均较好.  相似文献   

10.
各向异性弹性力学问题Hamilton正则方程的一般形式   总被引:3,自引:0,他引:3  
本文从修正后的Hellinger-Reissner变分原理出发,导出了由21个弹性常数组成的各向异性材料的混合方程,并证明它们即是Hamilton正则方程。由该统一形式还给出了角铺设材料和正交各向异性材料的Hanilton正则形式。  相似文献   

11.
A novel method is proposed to design neutral N-phase (N ? 3) elliptical inclusions with internal uniform hydrostatic stresses. We focus on the study of the internal and external stress states of an N-phase elliptical inclusion which is bonded to an infinite matrix through (N ? 2) interphase layers. The interfaces of the N-phase elliptical inclusion are (N ? 1) confocal ellipses. The design of the resulting overall composite material consists of four stages: (i) an inner perfectly bonded interphase/inclusion interface which is necessary to make the internal uniform stress state hydrostatic; (ii) outer imperfect interphase layers properly designed to make the coated inclusion harmonic (i.e., the uniform mean stress of the original field within the matrix is unperturbed); (iii) the aspect ratio of the elliptic inclusion uniquely chosen for a given material and thickness parameters to make the resulting coated inclusion neutral (i.e., the prescribed uniform stress field in the matrix remains undisturbed); and finally (iv) the derivation of a simple condition relating the remote uniform stresses and the thickness parameters of the (N ? 2) interphase layers for given material parameters which lead to internal uniform hydrostatic stresses. We note that another interesting feature of the present results is that the mean stress is found to be constant within each interphase layer, and the hoop stress in the innermost interphase layer is uniform along the entire interphase/inclusion interface.  相似文献   

12.
基于含椭圆核有限大各向异性板弹性问题的复变函数级数解,应用杂交变分原理建立了一种与常规有限元相协调的含任意椭圆核各向异性板杂交应力有限元.单元内的应力场和位移场采用满足平衡方程、几何方程与物理方程的复变函数级数解,假设的复变函数级数解精确满足椭圆核边界处的位移协调条件和应力连续条件,单元外边界上的位移场按常规有限元位移场假设,单元内椭圆核的长轴可以与材料主轴不重合.单元刚度矩阵采用Gauss积分求得,并给出了建立刚度矩阵的主要公式和推倒过程.数值计算结果表明该单元具有计算精度高、计算工作量小等优点.  相似文献   

13.
We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion. In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale, we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus. As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform (described by a constant interface stretching modulus for the entire interface), the anisotropic case considered here necessitates non-uniform effects of interface elasticity (described by a non-constant interface stretching modulus), because the bulk surrounding the interface is anisotropic. To this end, we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface. We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix, which is applicable to the arbitrary orientation and aspect ratio of the inclusion, an arbitrarily variable interface modulus, and an arbitrary uniform external loading applied remotely. The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples. It is demonstrated that whether the nonuniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion.  相似文献   

14.
基于各向异性体平面弹性理论中的复势方法,应用杂交变分原理建立了一种与常规有限元相协调的含任意椭圆核各向异性板杂交应力有限元,采用该杂交应力有限元来描述层板的椭圆核区域,采用杆单元来描述加强筋(杆单元的刚度取为层板沿筋条方向的刚度),其余区域采用常规8节点等参单元进行模拟,建立起分析含多椭圆核复合材料加筋壁板问题的力学分析方法,详细讨论了椭圆核大小、位置、筋条尺寸、相对位置、铺层比例等诸参数的影响规律,得到了一些有益的结论。  相似文献   

15.
The present paper solves the problem of sliding ellipsoidal/elliptical inclusion with the Eshelby property. Results show that the sliding ellipsoidal/elliptical inclusions can have uniform eigenstresses if the prescribed uniform eigenstrains fulfill certain prerequisites. Solutions and prerequisites are obtained for ellipsoidal and elliptical inclusions, respectively. It is shown that the eligible uniform eigenstrains inducing uniform eigenstresses can be shear or non-shear eigenstrains, depending on the geometric shape and the material constants of the inclusion. The study indicates that inclusions of degenerated form, like spheroids, spheres and circles, may also maintain uniform eigenstresses. At last, the corresponding discussion for the inhomogeneous sliding inclusion problem with both eigenstrain and remote loading is also given.  相似文献   

16.
Summary A generalized and unified treatment is presented for the antiplane problem of an elastic elliptical inclusion undergoing uniform eigenstrains and subjected to arbitrary loading in the surrounding matrix. The general solution to the problem is obtained through the use of conformal mapping technique and Laurent series expansion of the associated complex potentials. The resulting elastic fields are derived explicitly in both transformed and physical planes for the inclusion and the surrounding matrix. These relations are universal in the sense of being independent of any particular loading as well as the geometry of the matrix. The complete field solutions are provided for an elliptical inclusion under uniform loading at inifinity, and for a screw dislocation interacting with the elastic elliptical inclusion.  相似文献   

17.
In this paper, we show that a three-phase elliptic inclusion under uniform remote stress and eigenstrain in anti-plane shear admits an internal uniform stress field provided that the interfaces are two confocal ellipses. The exact closed-form solution is used to quantify the effect of the interphase layer on the residual stresses within the inclusion and the dependency of this effect on the aspect ratio of the elliptic inclusion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
An analytical study is presented showing the effects of the notch tip geometry on the location and direction of crack growth from an existing notch in a unidirectional fibrous composite modelled as a homogeneous, anisotropic, elastic material. Anisotropic elasticity and the normal stress ratio theory are used to study crack growth from elliptical notches in unidirectional composites. Sharp cracks, circular holes, and ellipses are studied under far-field tension, and shear loading. Limited comparisons are made showing good correlation with experimental results.  相似文献   

19.
In this work, an elegant method is proposed to derive the thermoelastic field in- duced by thermomechanical loadings in a decagonal quasicrystalline composite composed of an infinite matrix reinforced by an elliptical inclusion. The thermomechanical loadings include a uniform temperature change, remote uniform in-plane heat fluxes and remote uniform in-plane stresses. The corresponding boundary value problem is ultimately reduced to the solution of two independent sets of four coupled linear algebraic equations, each of which involves four complex constants characterizing the internal stress field. The solution demonstrates that a uniform tem- perature change and remote uniform stresses will induce an internal uniform stress field, and that uniform heat fluxes will result in a linearly distributed internal stress field within the elliptical inclusion. The induced uniform rigid body rotation within the inclusion is given explicitly.  相似文献   

20.
Based on the Stroh formalism for anisotropic elasticity and the complex variable function method, we prove in this paper that the strong Eshelby conjecture holds for simply-connected anisotropic inclusion problems under plane or anti-plane deformation. The interfaces can be either perfect or dislocation-like. For these inclusion problems, if the induced stress field inside the inclusion is uniform for a single uniform eigenstrain, the inclusion is of the elliptic shape. Thanks to the generality of the proof method, we obtain also alternative proofs of the strong Eshelby conjecture for isotropic inclusion problems, which are given in the Appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号