首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Disinfection by products of haloacetic acids and perchlorate pose significant health risks, even at low microg/l levels in drinking water. A new method for the simultaneous determination of nine haloacetic acids (HAAs) and perchlorate as well as some common anions in one run with ion chromatography was developed. The HAAs tested included mono-, di-, trichloroacetic acids, mono, di-, tribromoacetic acids, bromochloroacetic acid, dibromochloroacetic acid, and bromodichloroacetic acid. Two high-capacity anion-exchange columns, a carbonate-selective column and a hydroxide-selective hydrophilic one, were used for the investigation. With the carbonate-selective column, the nine HAAs as well as fluoride, chloride, nitrite, nitrate, phosphate and sulfate could be well separated and determined in one run. With the very hydrophilic column and a gradient elution of sodium hydroxide, methanol and deionized water, the nine HAAs, fluoride, chloride, nitrite, nitrate as well as perchlorate could be simultaneously determined in one run within 34 min. The detection limits for HAAs were between 1.11 and 9.32 microg/l. For perchlorate, it was 0.60 microg/l.  相似文献   

2.
固相萃取-离子色谱法测定饮用水中的痕量卤代乙酸   总被引:3,自引:0,他引:3  
孙迎雪  黄建军  顾平 《色谱》2006,24(3):298-301
建立了固相萃取-离子色谱(SPE-IC)测定饮用水中痕量卤代乙酸(HAAs)(包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸和二溴乙酸)的方法。固相萃取采用LiChrolut EN SPE柱来进行痕量待测物的预浓缩(25倍)和基体杂质的消除,用NaOH(10 mmol/L)洗脱;色谱分离采用亲水性、高容量、氢氧化物选择型阴离子交换柱Dionex IonPac AS16(250 mm×4 mm i.d.),以NaOH为流动相进行浓度梯度淋洗,淋洗速度为0.8 mL/min,电导检测,进样量为500 μL。结果表明,用SPE-IC法测定HAAs,一溴乙酸的检测限为12.5 μg/L,其余4种HAAs的检测限为0.38~1.69 μg/L。该法可实现对饮用水中痕量卤代乙酸的测定。  相似文献   

3.
建立了高氯、高钠油田回注水中痕量无机阴、阳离子和有机酸的离子色谱分析方法。对高钠基质中痕量阳离子的测定,选用IonPac CS12A分析柱、H2SO4溶液梯度淋洗、电导检测器检测;对高氯基质中阴离子及有机酸的测定,选用对OH-具有高选择性的高容量的IonPac AS11-HC柱、KOH梯度淋洗、电导检测器检测。在优化的梯度淋洗条件下,高氯或高钠的存在不影响痕量阴离子或阳离子的测定。该方法具有良好的线性(r=0.9926~0.9990)和精密度(测定组分峰面积的相对标准偏差(n=7)在8.0%以下),回收率  相似文献   

4.
This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water.  相似文献   

5.
A novel analytical method that combines simultaneous liquid-liquid microextraction/methylation and headspace gas chromatography-mass spectrometry for the determination of nine haloacetic acids (HAAs) in water was reported. A mechanistic model on the basis of mass transfer with chemical reaction in which methylation of HAAs was accomplished in n-pentane-water (150 microl-10 ml) two-phase system with a tetrabutylammonium salt as phase transfer catalyst was proposed. Derivatisation with dimethylsulphate was completed in 3 min by shaking at room temperature. The methyl ester derivatives and the organic phase were completely volatilised by static headspace technique, being the gaseous phase analysed. Parameters related to the extraction/methylation and headspace generation of HAAs were studied and the results were compared with methyl haloacetate standards to establish the yield of each step. The thermal instability of HAAs, by degradation to their respective halogenated hydrocarbon by decarboxylation, and the possible hydrolysation of the methyl esters were rigorously controlled in the whole process to obtain a reliable and robust method. The proposed method yielded detection limits very low which ranges from 0.02 to 0.4 microg l(-1) and a relative standard deviation of ca. 7.5%. Finally, the method was validated with the US Environmental Protection Agency (EPA) method 552.2 for the analysis of HAAs in drinking and swimming pool water samples containing concentrations of HAAs that must be higher than 10 microg l(-1) due to the fact that this method is less sensitive than the proposed one.  相似文献   

6.
A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.  相似文献   

7.
Gas chromatography coupled to positive and negative ion chemical ionisation mass spectrometry was evaluated for the determination of free volatile fatty acids (VFAs) from aqueous samples by headspace solid-phase microextraction. Negative ion chemical ionisation in the selected ion monitoring mode using ammonia as reagent gas provided acceptable sensitivity and the highest selectivity for the determination of C2-C7 fatty acids using a polydimethylsiloxane-Carboxen fibre. Detection limits in the range of 150 microg l(-1) for acetic acid and from 2 to 6 microg l(-1) for the remaining carboxylic acids were achieved. The reproducibility of the method was between 9 and 16%. The developed analytical procedure was applied to the analysis of VFAs in raw sewage. The absence of interfering peaks provided a more accurate determination of acetic, propionic, butyric and isovaleric acids than a similar analytical scheme but using a flame ionisation detector.  相似文献   

8.
In this paper, an analytical method for the determination of six iodinated X-ray contrast agents (amidotrizoic acid, iohexol, iomeprol, iopamidol, iopromide, and ioxitalamic acid), iodide, and iodate in water samples is presented. The method is based on a separation of the analytes by ion chromatography (IC) and a subsequent detection by inductively-coupled plasma mass spectrometry (ICP-MS). The method was optimised with respect to separation conditions (column type and eluent composition) and extensively validated. Without pre-concentration of the samples, limits of detection below 0.2 microg/l could be achieved whereby reproducibility was below 6% for all compounds under investigation.  相似文献   

9.
Supported liquid membrane microextraction (SLMME) with high-performance liquid chromatography (HPLC)-UV detection has been developed for the extraction, preconcentration, and determination of all the nine haloacetic acids (HAAs) in water. The HAAs are extracted into a supported liquid membrane, and then back-extracted into few microliters of an acceptor solution. The extract was directly analyzed by HPLC-UV with a 15-min run. Enrichment factors in the range of 300-3000 were obtained in a 60-min extraction, and detection limits were at low to sub-microg/L level with R.S.D. values between 1.5 and 10.8%. The parameters that affected analyte enrichment were studied. This approach offers an attractive alternative to the current US Environmental Protection Agency standard methods for HAA analysis, which require complex sample preparation and derivatization prior to analysis by gas chromatography. SLMME can also be used in conjunction with other analytical schemes, such as, ion chromatography and capillary electrophoresis.  相似文献   

10.
Ion chromatography in combination with atmospheric pressure ionization mass spectrometry (API-MS) as well as with inductively coupled plasma mass spectrometry (ICP-MS) had been compared for trace analysis of bromate. The results indicate that both techniques yield comparable results, which are in excellent agreement with standard methods for bromate determination. Furthermore, both techniques showed almost equal absolute detection limits (approximately 50 pg bromate injected). Contrary to IC-API-MS, IC-ICP-MS can tolerate a higher salt concentration in the mobile phase. This allows the use of high-capacity columns combined with large sample volumes. This lowered the concentration based detection limits by one order of magnitude for IC-ICP-MS compared to IC-API-MS (0.06 microg/l vs. 0.5 microg/l). On the other hand, IC-API-MS is able to allow a positive identification of bromate even in cases when IC does not fully separate bromate from other bromine-containing species. The performance data of both IC-MS techniques have been established by participation in an international round robin test.  相似文献   

11.
使用反相固相萃取预处理与超高效液相色谱-串联四极杆质谱仪(RSPE UPLC-MS/MS)联用建立了同时测定污水中9种卤乙酸(HAAs)的分析方法。研究表明:ENVI-C18固相萃取小柱能有效去除污水样品中有机基质的干扰,样品pH值调至2.5能有效消除无机离子对HAAs离子化的影响;采用HSST3(2.1 mm×100 mm)色谱柱,以甲醇和0.000 5%甲酸为流动相,可在15.0 min内将9种HAAs分离且效果良好。采用优化后的程序建立标准曲线,9种HAAs的线性范围为0.5~100μg/L,相关系数(r2)为0.999 7~0.999 9,检出限和定量下限分别为0.02~0.26μg/L和0.05~0.86μg/L,日内和日间相对标准偏差分别为1.4%~10.0%和1.7%~10.0%。3个污水处理厂出水在2.5μg/L和10μg/L的加标浓度水平下,回收率为85.2%~107.8%。该方法能够满足污水处理厂出水中9种HAAs的检测要求。  相似文献   

12.
Wu F  Gabryelski W  Froese K 《The Analyst》2002,127(10):1318-1323
A fast headspace solid-phase microextraction gas chromatography method for micro-volume (0.1 mL) samples was optimized for the analysis of haloacetic acids (HAAs) in aqueous and biological samples. It includes liquid-liquid microextraction (LLME), derivatization of the acids to their methyl esters using sulfuric acid and methanol after evaporation, followed by headspace solid-phase microextraction with gas chromatography and electron capture detection (SPME-GC-ECD). The derivatization procedure was optimized to achieve maximum sensitivity using the following conditions: esterification for 20 min at 80 degrees C in 10 microL methanol, 10 microL sulfuric acid and 0.1 g anhydrous sodium sulfate. Multi-point standard addition method was used to determine the effect of the sample matrix by comparing with internal standard method. It was shown that the effect of the matrix for urine and blood samples in this method is insignificant. The method detection limits are in the range of 1 microg L(-1) for most of the HAAs, except for monobromoacetic acid (MBAA) (3 microg L(-1)) and for monochloroacetic acid (MCAA) (16 microg L(-1)). The optimized procedure was applied to the analysis of HAAs in water, urine and blood samples. All nine HAAs can be separated in < 13 min for biological samples and < 7 min for drinking water samples, with total sample preparation and analysis time < 50 min. Analytical uncertainty can increase dramatically as the sample volume decreases; however, similar precision was observed with our method using 0.1 mL samples as with a standard method using 40 mL samples.  相似文献   

13.
A method based on ion chromatography (IC) and inductively coupled plasma MS (ICP-MS) was developed for the speciation of arsenic in water and soil extracts. An anion-exchange column (G3154A/101) was used to separate As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) with excellent resolution. Various ammonium salts, including NH4H2PO4, (NH4)2HPO4, (NH4)2CO3, and NH4HCO3, were examined as eluents to reduce matrix interference from chloride and to solve clogging problems. The best arsenic speciation was obtained within 9 min with excellent resolution and without interference from high chloride concentrations using an eluent containing 7.5 mM (NH4)2HPO4 at pH 7.9. The detection limits for the target arsenic species ranged from 0.1 to 0.4 microg/L with direct injection of sample without matrix elimination. The proposed method was effectively demonstrated by determining arsenic species in contaminated waters and soils of Bangladesh.  相似文献   

14.
Microporous membrane liquid-liquid extraction (MMLLE) was coupled on-line with gas chromatography for the determination of pesticides in wine. The MMLLE-GC provided to be efficient and selective and the method was linear, repeatable and sensitive. The limits of detection ranged from 0.05 to 2.3 microg/l and the limits of quantification were 0.2-7.5 microg/l for all the analytes using FID as detector. With MS detection LODs in the range 0.03-0.4 and LOQs of 0.3-3.5 microg/l were achieved. The method was applied to the determination of pesticides in several red wines of different origin.  相似文献   

15.
Quantitative determination of trace glyphosate and phosphate in waters was achieved by coupling ion chromatography (IC) separation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The separation of glyphosate and phosphate on a polymer anion-exchange column (Dionex IonPac AS16, 4.0 mm x 250 mm) was obtained by eluting them with 20 mM citric acid at 0.50 mL min(-1), and the analytes were detected directly and selectively by ICP-MS at m/z = 31. Parameters affecting their chromatographic behaviors and ICP-MS characteristics were systematically examined. Based on a 500-microL sample injection volume, the detection limits were 0.7 microgL(-1) for both glyphosate and phosphate, and the calibrations were linear up to 400 microgL(-1). Polyphosphates, aminomethylphosphonic acid (the major metabolite of glyphosate), non-polar and other polar phosphorus-containing pesticides showed different chromatographic behaviors from the analytes of interest and therefore did not interference. The determination was also interference free from the matrix anions (nitrate, nitrite, sulphate, chloride, etc.) and metallic ions. The analysis of certified reference material, drinking water, reservoir water and Newater yielded satisfactory results with spiked recoveries of 97.1-107.0% and relative standard deviations of < or = 7.4% (n = 3). Compared to other reported methods for glyphosate and phosphate, the developed IC-ICP-MS method is sensitive and simple, and does not require any chemical derivatization, sample preconcentration and mobile phase conductivity suppression.  相似文献   

16.
Haloacetic acids (HAAs) were determined in different water samples by a new, fast and simple analysis method based on enrichment of 50-ml water samples at pH 1.8 by solid-phase extraction (SPE) followed by liquid chromatography (LC) separation and electrospray ionization mass spectrometric detection in the negative ionization mode. Deprotonated (M-H)-haloacetates and decarboxylated (M-COOH)- ions were detected. Different polymeric SPE sorbents were tested, and LiChrolut EN was found to be the best material for the extraction. Complete LC separation of all compounds could only be achieved by ion-pair chromatography using triethylamine as volatile ion-pairing reagent. The detection limits were in the low microg/l range. High microg/l concentration levels for the chlorinated and brominated haloacetates were found in drinking water from a drinking water treatment plant in Barcelona, and the corresponding tap water. In swimming pool water samples from Catalonia mg/l levels and in surface river water from Portugal microg/l values were detected. These results confirm other recent reports on the ubiquitous occurrence of HAAs in aqueous environments.  相似文献   

17.
This review details the contribution of ion chromatography (IC) to environmental analysis. With reference to the problems usually encountered in environmental analysis (low concentrations to be detected and matrix interference), applications of IC in the analysis of inorganic cations in water and in the analysis of the platinum group elements (PGEs) in air particulate matter, and the advantages of this technique over more traditionally accepted analytical techniques will be discussed. Other current environmental topics, for example the occurrence of haloacetic acids (HAAs) in drinking water, will be covered, highlighting the importance of IC as an emerging powerful tool for monitoring HAAs, recognized also by the EPA that recently adopted it in a regulated method (Method 557).  相似文献   

18.
Honglan Shi  Craig Adams 《Talanta》2009,79(2):523-183
Haloacetic acids (HAAs) and bromate are toxic water disinfection by-products (DBPs) that the U.S. Environmental Protection Agency has regulated in drinking water. Iodoacetic acids (IAAs) are the emerging DBPs that have been recently found in disinfected drinking waters with higher toxicity than their corresponding chloro- and bromo-acetic acids. This study has developed a new rapid and sensitive method for simultaneous analysis of six brominated and four iodinated acetic acids, bromate, iodate, bromide, and iodide using ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Mono-, di- and tri-chloroacetic acids are not detected by this method because the sensitivity of ICP-MS analysis for chlorine is poor. Following IC separation, an Elan DRC-e ICP-MS was used for detection, with quantitation utilizing m/z of 79, 127, and 74 amu for Br, I, and Ge (optional internal standard) species, respectively. Although the primary method used was an external standard procedure, an internal standard method approach is discussed herein as well. Calibration and validation were done in a variety of natural and disinfection-treated water samples. The method detection limits (MDLs) in natural water ranged from 0.33 to 0.72 μg L−1 for iodine species, and from 1.36 to 3.28 μg L−1 for bromine species. Spiked recoveries were between 67% and 123%, while relative standard deviations ranged from 0.2% to 12.8% for replicate samples. This method was applied to detect the bromine and iodine species in drinking water, groundwater, surface water, and swimming pool water.  相似文献   

19.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

20.
Cao QE  Ding Z  Fang R  Zhao X 《The Analyst》2001,126(8):1444-1448
The resonance Rayleigh light-scattering (RRLS) technique was used to develop a simple, sensitive and selective method for the determination of proteins. The method is based on the interaction between proteins and Pyrogallol Red (PR) in the pH range 3.6-4.2, which causes a substantial enhancement of the resonance scattering signal of PR in the wavelength range 300-450 nm with the maximum scattering peak located at 347 nm. With this method, 0.25-13 microg ml(-1) of bovine serum albumin (BSA), 0.25-10 microg ml(-1) of human serum albumin (HSA) and 0.25-13 microg ml(-1) of human immunoglobulin G (IgG) can be determined, and the detection limits, calculated as three times the standard deviation of nine blank measurements, for BSA, HAS and IgG were 51, 48 and 57 microg l(-1), respectively. Moreover, the method shows almost no protein-to-protein variability and is free from interference from many amino acids and metal ions. The method, with high sensitivity, selectivity and reproducibility, was satisfactorily applied to the determination of the total protein in human serum and saliva samples. Mechanism studies indicated that PR can bind to BSA depending mainly on electrostatic forces, and this interaction can encourage the J-aggregation of PR, which results in enhanced Rayleigh light-scattering in the PR-protein system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号