首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
激光拉曼光谱实验最优实验参数的确定   总被引:2,自引:0,他引:2  
讨论了激光拉曼实验中狭缝宽度、阈值大小、积分时间和负高压对拉曼光谱的影响,确定了激光拉曼光谱实验的最佳工作参量,获得了清晰的拉曼光谱.  相似文献   

2.
实验测量了1,1''-联萘-2,2''-二胺(BINAM)的红外吸收光谱、可见光激发普通拉曼光谱、紫外共振拉曼光谱.用电子密度泛函方法计算了BINAM的基态几何构型、振动频率、普通拉曼和近共振拉曼强度.通过实验和理论计算对比,对所得红外和拉曼提出了详细的指认,并且分析了各振动模式的特征.BINAM的紫外共振拉曼光谱与普通拉曼光谱相比较,发现有若干拉曼谱带出现了选择性共振增强.基于共振拉曼强度分析,讨论了BINAM可能的激发态几何结构的变形.  相似文献   

3.
应用便携式拉曼光谱仪,采集了四种醛类分子(GnH2nO,n=1,2,3,4)的拉曼光谱,并通过量子化学中密度泛函理论(DFT)对四种醛类分子进行了分子模型构建和理论拉曼光谱模拟计算.通过实验拉曼光谱和DFT模拟计算结果的对比,对四种醛类分子的特征振动峰进行了指认.同时对四种醛类分子的实验光谱进行了分析比较.应用便携式拉...  相似文献   

4.
激光拉曼光谱的实验条件优化探析   总被引:1,自引:0,他引:1  
以四氯化碳的拉曼光谱为例分析了单色仪狭缝宽度、光电倍增管所加负高压、扫描间隔、积分时间等实验条件对激光拉曼光谱的影响,确定了最佳实验条件.  相似文献   

5.
辛硫磷(Phoxim)是一种高效、低毒、低残留有机磷杀虫剂,能抑制胆碱酯酶活性.辛硫磷的分子构型用Gauss View 5.0构造,理论计算采用密度泛函理论(density functional theory, DFT)的B3LYP/6-31+G(d, p)基组计算农药辛硫磷的拉曼光谱,实验上则采用分辨率为2 cm~(-1)的三级显微拉曼光谱检测仪对辛硫磷-甲醇溶液,辛硫磷乳油进行拉曼光谱检测.将理论拉曼光谱与实验拉曼光谱进行对比,其中有几个对应比较一致的拉曼光谱峰分别位于667, 745, 997, 1025, 1298, 1588 cm~(-1)处.首次报道了辛硫磷的拉曼光谱,同时对辛硫磷在600~1800 cm~(-1)区间的拉曼光谱进行了指认,指出了其在相应的频移位置产生较强拉曼光谱的分子振荡模式.  相似文献   

6.
通过实验检测获得了甲酸、乙酸、丙酸、丁酸四种-元酸的拉曼光谱.应用密度泛函理论对四种酸分子进行了模拟计算,计算结果与实验拉曼光谱吻合度较高,分别对四种酸的特征振动峰进行了详细的分析和振动归属.研究结果表明,甲酸的拉曼光谱与其他三种酸差异较大;乙酸、丙酸和丁酸的拉曼光谱具有一定的相似性,但主强峰位置和次强峰的强度存在着明...  相似文献   

7.
光导纤维拉曼光谱技术及其在化学中的应用   总被引:5,自引:1,他引:4  
本文综述了光导纤维拉曼光谱法的研究近况,主要介绍其实验技术及其应用于化学中常规拉曼光谱、表面增强拉曼光谱和近红外富里叶变换拉曼光谱等领域的工作,讨论了该领域存在问题和应用前景.  相似文献   

8.
文军 《物理实验》2014,(5):9-12
使用激光拉曼光谱仪测试了蒸馏水、瓶装饮用水和自来水的室温拉曼光谱,并用拉脱法测量了表面张力.实验结果表明:蒸馏水、瓶装饮用水和自来水的拉曼光谱基本相似,蒸馏水的拉曼光谱相对光滑,峰强度较大;自来水和瓶装饮用水的拉曼光谱出现杂峰与毛刺,峰强度降低,峰形宽化.蒸馏水、瓶装饮用水和自来水的表面张力随温度升高而减小.水中杂质物和溶解物对水中氢键的影响,使水分子团簇结构强化,极化率降低,振动能量减弱,拉曼光谱峰强度降低,表面张力增大.  相似文献   

9.
为了提供基于拉曼光谱鉴定帕拉米韦三水合物的需要,本文通过微区拉曼光谱仪检测了帕拉米韦三水合物标准化学对照品的自然拉曼光谱,利用密度泛函方法计算了两种帕拉米韦三水合物同分异构体的理论拉曼光谱。提出了特征频率取样的拉曼光谱识别函数,并根据实验结论对理论光谱进行校正,得到了与实验匹配度较高的帕拉米韦三水合物的理论拉曼光谱。最后分析了实测光谱特征峰位的振动模式。  相似文献   

10.
利用密度泛函理论研究了罗丹明6G、罗丹明123和罗丹明B分子的拉曼光谱. BP86泛函计算的罗丹明系列分子的阳离子在气相中的拉曼光谱与相应的分子在水溶液中的实验光谱符合很好. 结果显示氯离子以及氢键的引入对罗丹明B分子的拉曼光谱有较明显的影响,该影响可以部分地解释罗丹明B分子在水溶液中和在金表面上拉曼光谱的不同. 精确描述罗丹明分子在金属表面的表面增强拉曼光谱,需要考虑由界面相互作用而导致的变化.  相似文献   

11.
提出一种拉曼光谱校正方法.通过计算二元碱会属硅酸盐团簇基元的拉曼光谱,对实验光谱高频区的非桥氧(Onb)对称伸缩振动的强度进行了校正,从而建立谱峰强度和团簇实际浓度的直观相关关系,同时,分析研究了二元碱金属硅酸盐玻璃阳离子对谱峰强度的影响.校正后的拉曼光谱可以真实地显示同化学成分的二元碱金属硅酸盐玻璃表观实验拉曼谱峰强...  相似文献   

12.
研究了4条CCl4斯托克斯激光拉曼光谱,通过对CCl4分子结构及振动模式对称性的分析,设计了一套测量拉曼光谱退偏度的实验方案,将实验结果和理论值进行了比较.  相似文献   

13.
拉曼光谱技术具有多组分同时探测、分析周期短和非接触等特点,被应用于多个领域,但是由于较低的探测灵敏度,限制了拉曼光谱技术的发展。针对提高拉曼光谱技术对气体探测灵敏度问题,本文设计并搭建了一套基于空芯光纤气体拉曼光谱增强系统,开展了空芯光纤拉曼光谱系统和后向散射拉曼光谱实验系统对比实验研究。实验结果表明,空芯光纤对信号、背景和噪声都具有放大效果,以空气中氮气和氧气为探测物质,与后向拉曼光谱信号相比,在相同探测时间情况下,信号强度增强60倍以上,信噪比增强约6倍;在相同探测强度情况下,探测时间仅为后向散射的1/60,噪声为后向散射拉曼系统的1/2。  相似文献   

14.
本文通过实验测量了胞嘧啶的常规拉曼光谱,有四个弱拉曼峰在以前胞嘧啶的常规拉曼光谱中未检测到。采用密度泛函(Density Function Theory)B3LYP/6-31+G(d,p)计算了胞嘧啶分子的拉曼光谱。结合理论计算结果对实验拉曼光谱振动模式进行了指认,并对其中几个拉曼峰非常弱的原因进行了分析。  相似文献   

15.
本文实验测量了1,2,4-三唑-3-羧酸根(TC~-阴离子)及其环去质子化衍生物(dp-TC~2-二价阴离子)在水溶液中的拉曼光谱,并采用MN15泛函和PCM溶剂模型计算了其几何结构、振动频率和拉曼强度.基于计算光谱和氘化位移的测量,对dp-TC~(2-)的拉曼光谱做了清楚的光谱标识.本文还系统研究了TC~-阴离子的各种质子互变异构体,发现2H互变异构体比其他互变异构体更稳定,并且TC~-溶液的实验拉曼光谱与单体2H互变异构体的计算光谱也基本一致.与计算光谱相比,实验观测到的谱带分裂可能来自于TC~-的氢键结合二聚体的影响.  相似文献   

16.
在单次冲击压缩实验中,运用高敏度瞬态拉曼光谱技术观测了液态硝基甲烷分子的拉曼光谱. 将该拉曼测量技术与二级轻气炮的实验平台结合起来,获得硝基甲烷分子振动模式的高压动态行为. 硝基甲烷被12 GPa压力冲击时的拉曼光谱可清晰探测,其拉曼振动峰仅仅发生了峰位蓝移和峰宽展宽的变化,未显示出化学变化产生的迹象.  相似文献   

17.
研究伪麻黄碱的拉曼光谱和吸附在纳米银基底上的表面增强拉曼光谱(SERS),利用密度泛函理论B3LYP/6-311G++(d, p)方法对伪麻黄碱分子进行了计算,得到了分子构型信息和理论拉曼光谱,用Gaussview软件对分子振动模式进行了全面的归属,在伪麻黄碱的表面增强拉曼光谱中,采用了自组装方法获得了团簇银纳米表面增强基底,实现了很好的增强效应.实验结果表明:伪麻黄碱的拉曼光谱计算结果和实验结果基本一致,理论计算为伪麻黄碱分子振动峰位的归属提供了重要的依据,伪麻黄碱分子与银纳米表面化学吸附,苯环垂直于纳米基底表面,研究结果为伪麻黄碱的拉曼光谱检验分析提供了理论依据,也为苯丙胺类毒品的光谱分析研究提供了参考.  相似文献   

18.
以拉曼光谱检测淮山研究为例,引导大学生初步参与科研实验.初步学习用半导体激光、全息光栅和近红外增强CCD探测器等光电器件,构建近红外拉曼光谱探测系统,测试获得淮山拉曼光谱,以及淮山拉曼一阶导数谱,标记淮山特征峰.  相似文献   

19.
表面增强拉曼光谱在化学、生物及表面科学等领域都有广泛应用, 因此六氢吡啶的表面增强拉曼光谱的研究具有重要意义。实验用法国JOBIN YVON公司的光谱仪测定了六氢吡啶的正常拉曼光谱及其在银溶胶、银膜表面的表面增强拉曼光谱(SERS), 确保了实验结果的可靠性。利用表面增强拉曼散射技术研究了六氢吡啶的拉曼谱, 对它的拉曼峰进行了指认, 并得出了在银表面的吸附方式。同时分析了六氢吡啶在银溶胶及银膜表面拉曼散射光强增强程度不同的原因。  相似文献   

20.
为了对苯的质量分数进行快速准确的检测,采用拉曼光谱法进行检测.对苯的激光拉曼光谱进行了理论分析,进行了标准样品和不同质量分数苯样品的系列拉曼光谱实验.结果表明:苯的拉曼光谱特征峰值与苯的含量成正比,将最强的561.4 nm处的峰值代入线性回归公式,即可得到苯的质量分数,检出限达0.3%.得到一种新的苯质量分数检测方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号