首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnO2 nanowires mixed nanodendrites for high ethanol sensor response   总被引:1,自引:0,他引:1  
Mixed morphology of SnO2 nanowires and nanodendrites was synthesized on the gold-coated alumina substrates by carbothermal reduction of SnO2 in closed crucible. The products were characterized by scanning electron microscopy, x-ray diffractometer, and transmission electron microscopy. Results showed the SnO2 nanowires and the SnO2 nanodendrites branched out from the main nanowires. Both SnO2 nanostructures were pure tetragonal rutile structure. The nanowires were grown in [101] and directions with the diameter of 50–150 nm and the length of a few 10 μm. The nanodendrites were about 100–300 nm in diameter. The growth mechanism of the SnO2 nanostructures was also discussed. Characterization of ethanol gas sensor, based on the mixed morphology of the SnO2 nanostructures, was carried out. The optimal temperature was about 360 °C and the sensor response was 120 for 1000 ppm of ethanol concentration.  相似文献   

2.
A simple and efficient way of making highly sensitive SnO2 nanowire-based gas sensors without an individual lithography process was studied. The SnO2 nanowires network was floated upon the Si substrate by separating the Au catalyst layer from the substrate. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structures. The sensitivity was 5-30 when the NO2 concentration was 1-10 ppm. The response time was ca. 20-60 s.  相似文献   

3.
P-type porous silicon (PS) structure has been prepared by anodic electrochemical etching process under optimized conditions. Photoluminescence studies of the PS structure show emission at longer wavelengths (red) for the excitation at 365 nm. Scanning electron microscope investigations of the PS surface confirm the formation of uniform porous structure, and the pore diameter have been estimated as 25 μm. Pd:SnO2/PS/p-Si heterojunction with top gold ohmic contact developed by conventional methods has been used as the sensor device. Sensing properties of the device towards liquefied petroleum gas (LPG) and NO2 gas have been investigated in an indigenously developed sensor test rig. The response and recovery characteristics of the sensor device at different operating temperatures show short response time for LPG. From the studies, maximum sensitivity and optimum operating temperature of the device towards LPG and NO2 gas sensing has been estimated as 69% at 180 °C and 52% at 220 °C, respectively. The developed sensor device shows a short response time of 25 and 57 s for sensing LPG and NO2 gases, respectively. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

4.
Wei Zhou  Manlin Tan 《Optik》2012,123(23):2171-2173
SnO2-CuO nanocomposite was synthesized by impregnating SnO2 nanowires with CuCl2 solution and subsequent calcination. SEM and XRD were used to characterize the morphology and structure of the product. The optical properties were analyzed by Raman and photoluminescence (PL) spectra at room temperature. Except the strong orange emission of SnO2, the PL spectrum showed a red shoulder at 678 nm which originated from the interface between SnO2 and CuO.  相似文献   

5.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

6.
In this project, we have explored RuO2 and Ru nanoparticles (∼ ∼10 and ∼ ∼5 nm, respectively, estimated from XRD data) to be used as gate material in field effect sensor devices. The particles were synthesized by wet chemical procedure. The capacitance versus voltage characteristics of the studied capacitance shifts to a lower voltage while exposed to reducing gases. The main objectives are to improve the selectivity of the FET sensors by tailoring the dimension and surface chemistry of the nanoparticles and to improve the high temperature stability. The sensors were characterized using capacitance versus voltage measurements, at different frequencies, 500 Hz to 1 MHz, and temperatures at 100–400°C. The sensor response patterns have been found to depend on operating temperature. X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the oxidation state due to gas exposure. Quantum-chemical computations suggest that heterolytic dissociative adsorption is favored and preliminary computations regarding water formation from adsorbed hydrogen and oxygen was also performed.  相似文献   

7.
E. Steudel  P. Birke  W. Weppner 《Ionics》1996,2(5-6):421-426
A thin film solid state electrochemical gas sensor has been investigated for CO2 detection based on the cell reaction: Na++OH+CO2=NaHCO3. The galvanic cell arrangement is Au | NaxCoO2−δ (ref.) | NASICON | Au, SnO2 where the right hand electrode is in contact with CO2 and O2 in a humid atmosphere. The response has been compared to results obtained with a conventional pellet type sensor. Furthermore, both devices have been exposed to CO and humidity. Strong cross-sensitivities were observed leading to large changes in the emf in both cases. The response to moisture is reversible and fast with a response time of about 1 min according to a fast surface reaction of H2O with SnO2. The presence of CO leads to a signal change with a high response time and a very slow reverse reaction. However, the response to CO2 is not influenced by the presence of CO or H2O with regard to the signal height and response time. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

8.
9.
SnO2/TiO2 mixed oxides with primary particle size ranging between 5 nm dp 12 nm were synthesized by doping a H2/O2/Ar flame with Sn(CH3)4 and Ti(OC3H7)4 co-currently. The effects of “flow coordinate,” concentration and flame configurations were investigated with respect to particle size and morphology of the generated mixed oxides. In situ characterization of the mixed oxides was performed using the particle mass spectrometer (PMS), while XRD, TEM, BET and UV–Vis were performed ex situ. Results obtained showed that primary particle size of mixed oxides can be controlled by varying experimental parameters. The mixed oxides have interesting properties compared to those of the pure oxides of TiO2 and SnO2, which were also synthesized in flames earlier. Band gap tuning opportunities are possible using mixed oxides.  相似文献   

10.
Based on the experimental results, obtained by studying both structural and gas-sensing properties of the SnO2 and In2O3 films deposited by the spray pyrolysis method, we analyzed the influence of crystallite size on the parameters of the SnO2- and In2O3-based thin film solid-state gas sensors. For comparison, the behavior of ceramic-type gas sensors was considered as well. In particular, we examined the correlation between the grain size and parameters of conductometric-type gas sensors such as the magnitude of sensor signal, the rate of sensor response, thermal stability, and the sensitivity of sensor signal to air humidity. Findings confirmed that that grain size is one of the most important parameters of metal oxides, controlling almost all operating characteristics of the solid state gas sensors fabricated using both the ceramic and thin film technologies. However, it was shown that there is no single universal requirement for the grain size, because changes in grain size could either improve, or worsen of operating characteristics of gas sensors. Therefore, the choice of optimal grain size should be based on the detailed consideration of all possible consequences of their influence on the parameters of sensors designed.  相似文献   

11.
We focused on the effects of the inorganic acid HNO3 on the gas-sensing properties of nanometer SnO2 and prepared the powders via a dissolution-pyrolysis method. Furthermore, the powders were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectra (EDS). Several aspects were surveyed, including the calcining temperature, concentration of nitric acid and the working temperature. The results showed that the gas response of 3 wt% HNO3-doped SnO2 powders (calcined at 500 °C) to 10 ppm Cl2 reached 316.5, at the working temperature 175 °C. Compared with pure SnO2, appropriate HNO3 could increase the gas sensitivity to Cl2 gas more significantly.  相似文献   

12.
Several types of carbon nanostructures (amorphous and graphitic), for the coating of SnO2 nanobelts and nanoparticles were obtained by a single catalytic process, during methane, natural gas, and methanol decomposition using the reactivity of surface-modified SnO2 nanostructure as a nanotemplate. The nanostructured catalyst templates were based on transition metal nanoparticles supported on SnO2 nanobelts previously prepared by a carbothermal reduction process. Carbon-coated SnO2 nanopowders were also successfully synthesized for the fabrication of carbon spheres. The carbon coating process and yield, along with the nature of the nanostructured carbon, are strongly influenced by the chemically modified surface of the SnO2 nanostructure template and the chemical reaction gas composition. The preliminary catalytic activity and gas-sensing properties of these novel materials based on metal nanoparticles and carbon-coated SnO2 were determined.  相似文献   

13.
Nd2CuO4 and La2CuO4 are potential candidates as cathode material for intermediate temperature-solid oxide fuel cells. Nd–Cu and La–Cu oxides were co-sputtered on rotating substrates from metallic La, Nd and Cu targets in the presence of a reactive argon–oxygen gas mixture. Structural and chemical features of these films have been determined by X-ray diffraction and energy-dispersive spectroscopy. Their electrical resistivity was measured using the four-point probe method. As-deposited Nd–Cu based coatings are amorphous and, after annealing, crystallise in K2NiF4+ δ -type structure for Nd/Cu atomic ratio of 2, with more or less Nd2O3 or CuO, depending on whether Nd or Cu is in excess, respectively. As-deposited La–Cu based coatings are also amorphous and crystallise in La2CuO4 for La/Cu >2 or in LaCuOδ perovskite-type structure when Cu is in excess. The electrical measurements show a clear relation between resistivity and structure of the coatings. After annealing, crystallised neodymium-based coatings show higher resistivity than lanthanum-based ones. Finally, LaCuOδ exhibit higher resistivity than La2CuO4. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

14.
Effects of functionalization materials on the selectivity of SnO2 nanorod gas sensors were examined by comparing the responses of SnO2 one-dimensional nanostructures functionalized with CuO and Pd to ethanol and H2S gases. The response of pristine SnO2 nanorods to 500 ppm ethanol was similar to 100 ppm H2S. CuO-functionalized SnO2 nanorods showed a slightly stronger response to 100 ppm H2S than to 500 ppm ethanol. In contrast, Pd-functionalized SnO2 nanorods showed a considerably stronger response to 500 ppm ethanol than to 100 ppm H2S. In other words, the H2S selectivity of SnO2 nanorods over ethanol is enhanced by functionalization with CuO, whereas the ethanol selectivity of SnO2 nanorods over H2S is enhanced by functionalization with Pd. This result shows that the selectivity of SnO2 nanorods depends strongly on the functionalization material. The ethanol and H2S gas sensing mechanisms of CuO- and Pd-functionalized SnO2 nanorods are also discussed.  相似文献   

15.
Pd@SnO2 and SnO2@Pd core@shell nanocomposites are prepared via a microemulsion approach. Both nanocomposites exhibit high‐surface, porous matrices of SnO2 shells (>150 m2 g?1) with very small SnO2 crystallites (<10 nm) and palladium (Pd) nanoparticles (<10 nm) that are uniformly distributed in the porous SnO2 matrix. Although similar by first sight, Pd@SnO2 and SnO2@Pd are significantly different in view of their structure with Pd inside or outside the SnO2 shell and in view of their sensor performance. As SMOX‐based sensors (SMOX: semiconducting metal oxide), both nanocomposites show a very good sensor performance for the detection of CO and H2. Especially, the Pd@SnO2 core@shell nanocomposite is unique and shows a fast response time (τ90 < 30 s) and a very good response at low temperature (<250 °C), especially under humid‐air conditions. Extraordinarily high sensor signals are observed when exposing the Pd@SnO2 nanocomposite to CO in humid air. Under these conditions, even commercial sensors (Figaro TGS 2442, Applied Sensor MLC, E2V MICS 5521) are outperformed.  相似文献   

16.
Density functional theory (DFT) combined with conductor-like solvent model (COSMO) have been performed to study the solvent effects of H2 adsorption on Cu(h k l) surface. The result shows H2 can not be parallel adsorbed on Cu(h k l) surface in gas phase and only vertical adsorbed. At this moment, the binding energies are small and H2 orientation with respect to Cu(h k l) surfaces is not a determining parameter. In liquid paraffin, when H2 adsorbs vertically on Cu(h k l) surface, solvent effects not only influences the adsorptive stability, but also improves the ability of H2 activation; When H2 vertical adsorption on Cu(h k l) surface at 1/4 and 1/2 coverage, H-H bond is broken by solvent effects. However, no stable structures at 3/4 and 1 ML coverage are found, indicating that it is impossible to get H2 parallel adsorption on Cu(h k l) surfaces at 3/4 and 1 ML coverages due to the repulsion between adsorbed H2 molecules.  相似文献   

17.
IR spectra of BeSO4.4H2O and its deuterated analogue at ∼300 K and ∼110 K are reported in the region 4000–1200 cm−1 using thin film and nujol mull techniques. The observed bands have been assigned as the internal modes of the water and the overtones and combinations of various modes using the recently revised assignments of SO4 2− and Be(aq)4 fundamentals in the region 1200–250 cm−1 (Srivastavaet al 1976). The splitting of the internal modes of water has been discussed in the light of the effects of deuteration and cooling and it is shown that all the water molecules in a unit cell are asymmetric but crystallographically equivalent.  相似文献   

18.
A sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was evaluated for the detection of trace levels of ethylene at atmospheric pressure using a fiber coupled DFB diode laser emitting in the 1.62 μm spectral range. A noise-equivalent QEPAS signal of ∼4 ppm C2H4 was achieved for a 0.7 s data acquisition time using wavelength-modulation with a second-harmonic detection scheme on the strongest C2H4 absorption peak at 6177.14 cm−1 with an average optical power of ∼15 mW. Improved detection sensitivity of 0.5 and 0.3 ppm C2H4 (1σ) was demonstrated using longer averaging time of 70 and 700 s, respectively. Important characteristics for the QEPAS based sensor operation in real-world conditions are presented, particularly the influence of external temperature variations. Furthermore, the response time of the ethylene sensor was measured in different configurations and it is shown that the QEPAS technique can provide a response time in a few seconds range even without active gas flow.  相似文献   

19.
《Current Applied Physics》2010,10(5):1249-1254
This paper reports on a simple and inexpensive ultrasonic spray pyrolysis method to synthesize agglomerate-free nanosized SnO2 particles with a size smaller than 10 nm. Scanning electron microscopy, transmission electron microscopy and high resolution X-ray diffraction studies were used to characterize the morphology, crystallinity, and structure of the SnO2 particles. Under the optimized experimental conditions, the prepared SnO2 sensor shows the high response (S = 491) towards 100 ppm ethanol gas at 300 °C, linearity in the range of 100–500 ppm, quick response time (2 s), recovery time (60 s) and selectivity against other gases. The response of the sensor was monitored in a 250–450 °C temperature range. The seven fold enhancement in gas response and selective detection of C2H5OH in the presence of other gases such as CH3OH and CH3CHOHCH3 are the significant points in this investigation. These results demonstrate that pure nanocrystalline SnO2 thin film can be used as the sensing material for fabricating high performance ethanol sensors.  相似文献   

20.
Single crystal Al2O3 samples were implanted with 45 keV Cu ion implantation at a dose of 1 × 1017 ions/cm2, and then subjected to furnace annealing in vacuum or with a flow of oxygen gas. Various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction spectroscopy and atomic force microscopy, have been used to investigate formation of Cu NPs and their evolution. Our results clearly show that the evolution of Cu NPs depends strongly on annealing atmosphere in the temperature range up to 600 °C. Annealing in vacuum only gives rise to a slight change in the size of Cu NPs. No evidence for oxidization of Cu NPs has been revealed. Remarkable modifications in Cu NPs, including the size increase and the effective transformation into CuO NPs, have been observed for the samples annealed at oxygen atmosphere. The results have been tentatively discussed in combination with the role of oxygen from atmosphere in diffusion of Cu atoms towards the surface and its interactions with Cu NPs during annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号