首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2011年   1篇
  2009年   1篇
  1990年   2篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Besides thermodynamic information, vibration can identify modes of a molecule by comparison of the spectroscopy and parameterize force field. By the application of group theory with the state of projection operators, a systematic method for getting the vibrational model of molecules such as the (3, 0), (4, 0), (5, 0) nanotubes was proposed. The U matrix from the combination of primitive’s harmonic vibrations was calculated and the effect of dielectric constants on the mechanism of these vibrations in nanotubes was studied. We found that in the high dielectrics the frequency of vibration has alternative behavior, however by the decreasing of the dielectrics, this behavior change to stable situation of geometry. The calculated data shown in Tables and Figures are in correspondence with some behavior of nanotubes.  相似文献   
2.
3.
SnO2 nanowires mixed nanodendrites for high ethanol sensor response   总被引:1,自引:0,他引:1  
Mixed morphology of SnO2 nanowires and nanodendrites was synthesized on the gold-coated alumina substrates by carbothermal reduction of SnO2 in closed crucible. The products were characterized by scanning electron microscopy, x-ray diffractometer, and transmission electron microscopy. Results showed the SnO2 nanowires and the SnO2 nanodendrites branched out from the main nanowires. Both SnO2 nanostructures were pure tetragonal rutile structure. The nanowires were grown in [101] and directions with the diameter of 50–150 nm and the length of a few 10 μm. The nanodendrites were about 100–300 nm in diameter. The growth mechanism of the SnO2 nanostructures was also discussed. Characterization of ethanol gas sensor, based on the mixed morphology of the SnO2 nanostructures, was carried out. The optimal temperature was about 360 °C and the sensor response was 120 for 1000 ppm of ethanol concentration.  相似文献   
4.
The design and generation of selective catalysts is an important aim of chemists and biologists. A number of successful strategies have emerged, including the synthesis and derivatization of synthetic hosts, the chemical modification and site-directed mutagenesis of enzymes, and the attenuation of natural enzyme activities in organic solvents. Since 1986 several laboratories have exploited the immune system to generate selective catalysts capable of catalyzing a wide range of chemical transformations. These include acyl transfer, β-elimination, carbon—carbon bond-forming, carbon—carbon bond-cleaving, porphyrin metalation, peroxidation, and redox reactions. The variety and number of transformations catalyzed by antibodies in this short period of time is testament to the versatility and power of the method in generating selective catalysts for applications in chemistry, biology, and medicine. Here we report the use of a new class of uncharged transition-state analogues for generating antibodies capable of catalyzing ester and carbonate hydrolysis. These antibodies are compared to those raised against tetrahedral phosphate and phosphonate transition-state analogues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号