首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V−1 s−1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.  相似文献   

2.
The design and synthesis of high‐performance n‐type organic semiconductors are important for the development of future organic optoelectronics. Facile synthetic routes to reach the K‐region of pyrene and produce 4,5,9,10‐pyrene diimide (PyDI) derivatives are reported. The PyDI derivatives exhibited efficient electron transport properties, with the highest electron mobility of up to 3.08 cm2 V−1 s−1. The tert‐butyl‐substituted compounds (t‐PyDI) also showed good one‐ and two‐photon excited fluorescence properties. The PyDI derivatives are a new family of aromatic diimides that may exhibit both high electron mobility and good light‐emitting properties, thus making them excellent candidates for future optoelectronics.  相似文献   

3.
高迁移率发光有机半导体材料是实现有机发光场效应晶体管(OLETs)的重要材料, 但其设计合成面临巨大挑战. 本文综合评述了近年来高迁移率发光材料, 特别是基于蒽的高迁移率发光材料的研究进展, 重点介绍了目前报道的20余种基于蒽的高迁移率发光有机半导体材料, 包括分子的设计策略、 相关的光电性能及其在OLETs器件方面的应用研究, 以便为进一步的相关研究提供有意义的指导和借鉴. 本文还对该领域未来发展的挑战、 发展方向及机遇进行了简单评述.  相似文献   

4.
A series of 1,3-indandione-terminated π-conjugated quinoids were synthesized by alkoxide-mediated rearrangement reaction of the respective alkene precursors, followed by air oxidation. This new protocol allows access to quinoidal compounds with variable termini and cores. The resulting quinoids all show LUMO levels below −4.0 eV and molar extinction coefficients above 105 L mol−1 cm−1. The optoelectronic properties of these compounds can be regulated by tuning the central cores as well as the aryl termini ascribed to the delocalized frontier molecular orbitals over the entire molecular skeleton involving aryl termini. n-Channel organic thin-film transistors with electron mobility of up to 0.38 cm2 V−1 s−1 were fabricated, showing the potential of this new class of quinoids as organic semiconductors.  相似文献   

5.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three-dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three-dimensional organic polymers is challenging. Now, the synthesis of a three-dimensional π-conjugated porous organic polymer (3D p-POP) using catalyst-free Diels–Alder cycloaddition polymerization followed by acid-promoted aromatization is presented. With a surface area of 801 m2 g−1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10−4 S cm−1 upon treatment with I2 vapor, the 3D p-POP is the first member of a new class of permanently porous 3D organic semiconductors.  相似文献   

6.
Development of new n-type semiconductors with tunable band gap and dielectric constant has significant implication in dissociating bound charge carrier relevant for demonstrating high performance optoelectronic devices. Boron-β-thioketonates (MTDKB), analogues to boron-β-diketonates containing a sulfur atom in the framework of β-diketones were synthesized. Bulk transport measurement exhibited an outstanding bulk electron mobility of ≈0.003 cm2 V−1 s−1, which is among the best values reported till date in these class of semiconducting materials and correspondingly a single junction photo responsivity of upto 6 mA W−1 was obtained. This new family of O,S-chelated boron compounds exhibited luminescence in the far red/near-infrared region. The remarkable red shift of 89 nm (fluorescence) observed for 4 a in comparison with analogues boron-β-diketonate signifies the importance of sulfur in these molecules. MTDKBs with amine functionality have also been investigated as an ON/OFF fluorescent sensor.  相似文献   

7.
Achieving high efficiency at high luminance is one of the most important prerequisites towards practical application of any kind of light-emitting diode (LED). Herein, we report highly emissive organic fluorescent molecules based on phenanthroimidazole-benzothiadiazole derivatives capable of maintaining high external quantum efficiency (EQE) at high luminance enabled by triplet–triplet fusion (TTF) in doped organic LEDs. The PIBzP-, PIBzPCN-, and PIBzTPA-based devices showed EQEs of 8.27, 9.15, and 8.64 %, respectively, at luminance of higher than 1000 cd m−2, with little efficiency roll-off.  相似文献   

8.
High performance solution processable n-type organic semiconductor is an essential element to realize low-cost, all organic and flexible composite logic circuits. In the design of n-type semiconducting materials, tuning the LUMO level of compounds is a key point. As a strong electron withdrawing unit, the introduction of chlorine atom into the chemical structure can increase the electron affinity of the material and reduce the LUMO energy level. Here, a series chlorine substituted N-heteroacene analogues of 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)oxy)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (O4Cl), 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)thio)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (S4Cl), 1,2,3,4,8,9,10,11-octachloro-6,13-bis(4-((2-ethylhexyl)oxy)phenyl)quinoxalino[2,3-b]phenazine (8Cl) and 12Cl have been synthesized and characterized. Solution-processed organic field-effect transistors (OFETs) based on these four compounds exhibit good electron mobilities of 0.04 cm2 V−1 s−1, 0.01 cm2 V−1 s−1, 2×10−3 cm2 V−1 s−1 and 3×10−3 cm2 V−1 s−1, respectively, under ambient conditions. The results suggest that these chlorine substituted π-conjugated N-heteroacene analogues are promising n-type semiconductors in OFET applications.  相似文献   

9.
A series of highly efficient deep red to near‐infrared (NIR) emissive organic crystals 1 – 3 based on the structurally simple 2′‐hydroxychalcone derivatives were synthesized through a simple one‐step condensation reaction. Crystal 1 displays the highest quantum yield (Φf) of 0.32 among the reported organic single crystals with an emission maximum (λem) over 710 nm. Comparison between the bright emissive crystals 1 – 3 and the nearly nonluminous compounds 4 – 7 clearly gives evidence that a subtle structure modification can arouse great property changes, which is instructive in designing new high‐efficiency organic luminescent materials. Notably, crystals 1 – 3 exhibit amplified spontaneous emissions (ASE) with extremely low thresholds. Thus, organic deep red to NIR emissive crystals with very high Φf have been obtained and are found to display the first example of NIR fluorescent crystal ASE.  相似文献   

10.
Using a tailored high triplet energy hole transport layer (HTL) is a suitable way to improve the efficiency and extend the lifetime of organic light-emitting devices (OLEDs), which can use all molecular excitons of singlets and triplets. In this study, dibenzofuran (DBF)-end-capped and spirobifluorene (SBF) core-based HTLs referred as TDBFSBF1 and TDBFSBF2 were effectively developed. TDBFSBF1 exhibited a high glass transition temperature of 178 °C and triplet energy of 2.5 eV. Moreover, a high external quantum efficiency of 22.0 %, long operational lifetime at 50 % of the initial luminance of 89,000 h, and low driving voltage at 1000 cd m−2 of 2.95 V were achieved in green phosphorescent OLEDs using TDBFSBF1 . Further, a high-hole mobility μh value of 1.9×10−3 cm2 V−1 s−1 was recorded in TDBFSBF2 . A multiscale simulation successfully reproduced the experimental μh values and indicated that the reorganization energy was the primary factor in determining the mobility differences among these SBF core based HTLs.  相似文献   

11.
Organic p‐type semiconductors with tunable structures offer great opportunities for hybrid perovskite solar cells (PVSCs). We report herein two dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) cored molecular semiconductors prepared through π‐conjugation extension and an N‐alkylation strategy. The as‐prepared conjugated molecules exhibit a highest occupied molecular orbital (HOMO) level of ?4.82 eV and a hole mobility up to 2.16×10?4 cm2 V?1 s?1. Together with excellent film‐forming and over 99 % photoluminescence quenching efficiency on perovskite, the DTP based semiconductors work efficiently as hole‐transporting materials (HTMs) for n‐i‐p structured PVSCs. Their dopant‐free MA0.7FA0.3PbI2.85Br0.15 devices exhibit a power conversion efficiency over 20 %, representing one of the highest values for un‐doped molecular HTMs based PVSCs. This work demonstrates the great potential of using a DTP core in designing efficient semiconductors for dopant‐free PVSCs.  相似文献   

12.
Increasing the length of N‐heteroacenes or their analogues is highly desirable because such materials could have great potential applications in organic electronics. In this report, the large π‐conjugated N‐heteroquinone 6,10,17,21‐tetra‐((triisopropylsilyl)ethynyl)‐5,7,9,11,16,18,20,22‐octaazanonacene‐8,19‐dione (OANQ) has been synthesized and characterized. The as‐prepared OANQ shows high stability under ambient conditions and has a particularly low LUMO level, which leads to it being a promising candidate for air‐stable n‐type field‐effect transistors (FETs). In fact, FET devices based on OANQ single crystals have been fabricated and an electron mobility of up to 0.2 cm2 V−1 s−1 under ambient conditions is reported. More importantly, no obvious degradation was observed even after one month. Theoretical calculations based on the single crystal are consistent with the measured mobility.  相似文献   

13.
Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB‐TTF) central core and a 2,1,3‐chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB‐TTF, have been synthesised as active materials for organic field‐effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron‐withdrawing 2,1,3‐chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution‐processed single‐crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V?1 s?1 as well as good ambient stability.  相似文献   

14.
A set of eight helical diamines were designed and synthesized to demonstrate their relevance as all‐in‐one materials for multifarious applications in organic light‐emitting diodes (OLEDs), that is, as hole‐transporting materials (HTMs), EMs, bifunctional hole transporting + emissive materials, and host materials. Azahelical diamines function very well as HTMs. Indeed, with high Tg values (127–214 °C), they are superior alternatives to popular N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐(1,1′‐biphenyl)‐4,4′‐diamine (NPB). All the helical diamines exhibit emissive properties when employed in nondoped as well as doped devices, the performance characteristics being superior in the latter. One of the carbohelical diamines (CHTPA) serves the dual function of hole transport as well as emission in simple double‐layer devices; the efficiencies observed were better by quite some margin than those of other emissive helicenes reported. The twisting endows helical diamines with significantly high triplet energies such that they also function as host materials for red and green phosphors, that is, [Ir(btp)2acac] (btp=2‐(2′‐benzothienyl)pyridine; acac=acetylacetonate) and [Ir(ppy)3] (ppy=2‐phenylpyridine), respectively. The results of device fabrications demonstrate how helicity/ helical scaffold may be diligently exploited to create molecular systems for maneuvering diverse applications in OLEDs.  相似文献   

15.
Perylene diimides (PDIs) and their derivatives are excellent semiconductors, while conjugated polymers based on PDIs have limited applications because of their low electron mobility (μe) derived from low molecular weight. The reported maximum number‐average molecular weight (Mn) of related polymers is only 21 kDa because PDIs have very poor solubility due to strong π–π stacking of their big planar conjugated cores. Herein, it is found that suitable semi‐perfluoroalkyl groups could enhance the solubility of PDIs significantly, and a series of semi‐perfluoroalkyl modified conjugated polymers with high molecular weight and electron mobility were synthesized. The maximum Mn reaches 94.8 kDa [P(4CF8CH‐PDI‐T2)HW]. In their space‐charge‐limited current (SCLC) devices, all polymers exhibit typical characters of electron transporting semiconductors, and the highest μe is up to 8.40 × 10−3 cm2 V−1 s−1 [P(4CF8CH‐PDI‐T2)HW], which is similar as that of widely used electron transporting semiconductor PC61BM (6.41 × 10−3 cm2 V−1 s−1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 116–124  相似文献   

16.
Sulfur-embedded polycyclic aromatic compounds have been used as building blocks for numerous organic semiconductors over the past few decades. While the success is based on thiophene-containing compounds, aromatic compounds that contain thiepine, a sulfur-containing seven-membered-ring arene, has been less well investigated. Here we report the synthesis and properties of π-extended pyrrole-fused heteropine compounds such as thiepine and oxepine. A π-extended pyrrole-fused thiepine exhibited a “pitched π-stacking” structure in the crystal, and exhibited a high charge carrier mobility of up to 1.0 cm2 V−1 s−1 in single-crystal field-effect transistors.  相似文献   

17.
Conjugated molecules with low lying LUMO levels are demanding for the development of air stable n‐type organic semiconductors. In this paper, we report a new A‐D‐A′‐D‐A conjugated molecule ( DAPDCV ) entailing diazapentalene (DAP) and dicyanovinylene groups as electron accepting units. Both theoretical and electrochemical studies manifest that the incorporation of DAP unit in the conjugated molecule can effectively lower the LUMO energy level. Accordingly, thin film of DAPDCV shows n‐type semiconducting behavior with electron mobility up to 0.16 cm2?V?1?s?1 after thermal annealing under N2 atmosphere. Moreover, thin film of DAPDCV also shows stable n‐type transporting property in air with mobility reaching 0.078 cm2?V?1?s?1.  相似文献   

18.
Organic spin-based molecular materials are considered to be attractive for the generation of functional materials with emergent optoelectronic, magnetic, or magneto-conductive properties. However, the major limitations to the utilization of organic spin-based systems are their high reactivity, instability, and propensity for dimerization. Herein, we report the synthesis, characterization, and magnetic and electronic studies of three ambient stable radical ions ( 1 a.+ , 1 b.+ , and 1 c.+ ). The radical ions 1 b.+ and 1 c.+ with BPh4 and BF4 counter anions, respectively, were synthesized in excellent yields by means of anion metathesis of 1 a.+ with Br as its counter anion. Notably, synthesis of 1 a.+ was achieved in an ecofriendly, solvent-free protocol. The radical ions were characterized by means of single-crystal X-ray diffraction studies, which revealed the discrete nature of the radical ions and extensive hydrogen-bonding interactions within the radical ions and with the counter anions. Thus, radical ions can be organized to form infinite supramolecular arrays using weak noncovalent interactions. In addition, the Br, BF4, and BPh4 anions formed diverse types of anion–π interactions with the naphthalene and imide rings of the radical ions. The radical ions were characterized by means of X-band electron paramagnetic resonance (EPR) spectroscopy in solution and in the solid state. Magnetic studies revealed their paramagnetic nature in the range of 10 to 300 K. The radical ions exhibited high resistivity approaching the gigaohm (GΩ) scale. In addition, the radical ions exhibited panchromism.  相似文献   

19.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

20.
Over the past two decades, progress in chemistry has generated various types of porous materials for removing iodine (129I or 131I) that can be formed during nuclear energy generation or nuclear waste storage. However, most studies for iodine capture are based on the weak host-guest interactions of the porous materials. Here, we present two cationic nonporous macrocyclic organic compounds, namely, MOC-1 and MOC-2 , in which 6I- and 8I were as counter anions, for highly efficient iodine capture. MOC-1 and MOC-2 were formed by reacting 1,1′-diamino-4,4′-bipyridylium di-iodide with 1,2-diformylbenzene or 1,3-diformylbenzene, respectively. The presence of a large number of I anions results in high I2 affinity with uptake capacities up to 2.15 g ⋅ g−1 for MOC-1 and 2.25 g ⋅ g−1 for MOC-2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号