首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

2.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

3.
Epitaxial (001)-oriented PbSc0.5Ta0.5O3 (PST) thin films were deposited by pulsed laser deposition. Local piezoelectric investigations performed by piezoelectric force microscopy show a dual slope for the piezoelectric coefficient. A piezoelectric coefficient of 3 pm/V was observed at voltages up to 0.8 V. However, at voltages above 0.8 V, there is a steep increase in piezoelectric coefficient mounting to 23.2 pm/V. This nonlinear piezoelectric response was observed to be irreversible in nature. In order to better understand this nonlinear behavior, voltage dependent dielectric constant measurements were performed. These confirmed that the piezoelectric non-linearity is indeed a manifestation of a dielectric non-linearity. In contrast to classical ferroelectric systems, the observed dielectric non-linearity in this relaxor material cannot be explained by the Rayleigh model. Thus the dielectric non-linearity in the PST films is tentatively explained as a manifestation of a percolation of the polar nano regions.  相似文献   

4.
The difficulties in synthesizing phase pure BaTiO3 doped-(Na0.5Bi0.5)TiO3 are known. In this work, we reporting the optimized pulsed laser deposition (PLD) conditions for obtaining pure phase 0.92(Na0.5Bi0.5)TiO3-0.08BaTiO3, (BNT-BT0.08), thin films. Dielectric, ferroelectric and piezoelectric properties of BNT-BT0.08, thin films deposited by PLD on Pt/TiO2/SiO2/Si substrates are investigated in this paper. Perovskite structure of BNT-BT0.08 thin films with random orientation of nanocrystallites has been obtained by deposition at 600 °C. The relative dielectric constant and loss tangent at 100 kHz, of BNT-BT0.08 thin film with 530 nm thickness, were 820 and 0.13, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 22 μC/cm2 and a coercive field of 120 kV/cm. The piezoresponse force microscopy (PFM) data showed that most of the grains seem to be constituted of single ferroelectric domain. The as-deposited BNT-BT0.08 thin film is ferroelectric at the nanoscale level and piezoelectric.  相似文献   

5.
(Na0.5Bix)0.93Ba0.07TiO3 (x=0.500-0.492) ceramics were prepared by a citrate method, and the structure and electrical properties of the ceramics were investigated with respect to the amount of Bi deficiency. It was detected that the Bi deficiency had a considerable impact on the crystal structure and microstructure. The inspection of both the temperature dependence of the dielectric properties (free permittivity ε33T/ε0 and dielectric loss tan δ) and the evolution of the polarization-electrical field (P-E) hysteresis loops with measuring temperature suggests that the Bi deficiency served to increase the depolarization temperature (Td). The Bi deficiency led to an increase in the coercive field (Ec) and mechanical quality factor (Qm) together with a decrease in the remanent polarization (Pr) and piezoelectric constants (d33). The variation of the structure and electrical properties with Bi deficiency amount was qualitatively interpreted in terms of the formation of Bi and oxygen vacancies in the Bi-deficient specimens. This research indicates the importance of adequately controlling Bi stoichiometry of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics in obtaining the desired ferroelectric and piezoelectric properties.  相似文献   

6.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

7.
《Current Applied Physics》2014,14(3):331-336
Lead-free piezoelectric ceramics (1 − x)Bi0.5Na0.5TiO3xBaZrO3 (BNT–BZ100x, with x = 0–0.10) were prepared using a conventional solid-state reaction method. The crystal structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNT–BZ100x ceramics were studied as functions of different BZ content. X-ray diffraction patterns revealed that the BZ completely diffused in the BNT lattice in the studied composition range. An appropriate amount of BZ addition improved the dielectric, ferroelectric, and piezoelectric properties of BNT ceramics. The remanent polarization (Pr) and piezoelectric constant (d33) increased from 22 μC/cm2 and 60 pC/N for pure BNT to 30 μC/cm2 and 112 pC/N for x = 0.040, respectively. In addition, electric field-induced strain was enhanced to its maximum value (Smax = 0.40%) with normalized strain (d*33 = Smax/Emax = 500 pm/V) at an applied electric field of 8 kV/mm for x = 0.055. The enhanced strain can be attributed to the coexistence of ferroelectric and relaxor ferroelectric phases.  相似文献   

8.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

9.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

10.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

11.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

12.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

13.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

14.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

15.
The effect of a small amount Fe2O3 (0.1-2 mol%) doping on the electrical properties of (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 (NKLNTS) ceramics was investigated. It was found that the B-site substitution of Fe3+ does not change the crystal structure within the studied doping level and all modified ceramics have a pure tetragonal perovskite structure at room temperature. The addition of Fe2O3 can promote the sintering of NKLNTS ceramics, and simultaneously cause the grain growth so that Fe3+-doped NKLNTS compositions show degraded densification at higher doping level. Furthermore, the dielectric properties of the NKLNTS ceramics do not show a significant change by Fe2O3 doping. However, the addition of Fe2O3 was found to have a significant influence on the electric fatigue resistance and the durability against water. The presence of oxygen vacancies caused by the replacement of Fe3+ for B-site ions makes the NKLNTS ceramics harder.  相似文献   

16.
This paper reports on multiferroic properties of Ho substituted BiFeO3 (Bi1−xHoxFeO3) ceramics. It is observed that for x=0.15, a prominent ferroelectric loop is seen at 300 K even if the system remains in rhombohedral (R3c) phase without appearance of any observable impurity phases. A well shaped M-H loop is observed at 10 K for x=0.15. However it showed ferromagnetism, confirming the contribution of Ho3+ towards enhancement of ferromagnetic properties of BiFeO3 at 300 K. Suppression of impurity phases of pure BiFeO3 bulk ceramic favors the reduction of mobile oxygen vacancies and reduces leakage current, due to which ferroelectric properties of BiFeO3 is enhanced. We argue that Ho substitution at Bi site is likely to suppress the spiral spin modulation and at the same time increase the canting angle, which favors enhanced multiferroic properties. XRD, SEM, magnetization, polarization and chemical bonding analysis measurements were carried out to explain the multiferroic behavior.  相似文献   

17.
《Current Applied Physics》2015,15(11):1521-1528
Lead-free piezoelectric ceramics of the composition (1-x)(Bi0.5K0.50)TiO3-xBi(Ni0.50Ti0.50)O3 or (1-x)BKT-xBNiT (when x = 0–0.20 mol fraction) were prepared by a conventional mixed-oxide method and sintered at 1050 °C for 4 h. The effects of BNiT content on the phase equilibria, and the dielectric, ferroelectric and piezoelectric properties were systematically investigated. High density sintered specimens (5.71–6.12 g/cm3) were obtained for all compositions. X-ray diffraction patterns showed that all BKT-BNiT samples exhibited a single perovskite phase which confirms that BNiT and BKT formed a solid solution up to x = 0.20. A morphotropic phase boundary (MPB) separating a BKT-rich tetragonal phase and a BNiT pseudo-cubic phase was identified over the compositional range 0.05 < x < 0.10, where enhanced electrical properties were observed. The optimum dielectric properties (εr = 1710, tanδ = 0.036), ferroelectric properties (Pr = 16.6 μC/cm2, Ec = 22.5 kV/cm and Rsq = 0.86) and piezoelectric properties (d33 = 288 pC/N, Smax = 0.22% and d*33 = 313 pm/V) were observed with a relatively high Tm ∼ 304 °C within this MPB region. Overall, these results indicate that the BKT-BNiT ceramic system is a promising lead-free piezoelectric candidate for further development for actuator applications.  相似文献   

18.
0.935(K0.5+xNa0.5+x)NbO3-0.065LiSbO3 lead-free piezoelectric ceramics were prepared by normal sintering, and their piezoelectric and dielectric properties were investigated by varying the compensating amount x of alkaline elements (Na and K) addition. It was found that the crystal structure changed from tetragonal to orthorhombic with increasing x from −0.010 to 0.010. An MPB was tailored by optimizing the alkaline elements contents. Enhanced electrical and electromechanical responses of d33=253 pC/N, kp=0.47, kt=0.45 and tanδ=0.027 were obtained in the ceramics with x=0.005. These excellent piezoelectric and electromechanical properties indicate that this system may be an attractive lead-free material for a wide range of electro-mechanical transducer applications.  相似文献   

19.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

20.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号