首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Room temperature multiferroic electroceramics of Gd doped BiFeO3 monophasic materials have been synthesized adopting a slow step sintering schedule. Incorporation of Gd nucleates the development of orthorhombic grain growth habit without the appearance of any significant impurity phases with respect to original rhombohedral (R3c) phase of un-doped BiFeO3. It is observed that, the materials showed room temperature enhanced electric polarization as well as ferromagnetism when rare earth ions like Gd doping is critically optimized (x=0.15) in the composition formula of Bi1+2xGd2x/2Fe1−2xO3. We believe that magnetic moment of Gd+3 ions in Gd doped BiFeO3 tends to align in the same direction with respect to ferromagnetic component associated with the iron sub lattice. The dielectric constant as well as loss factor shows strong dispersion at lower frequencies and the value of leakage current is greatly suppressed with the increase in concentration of x in the above composition. Addition of excess bismuth and Gd (x=0.1 and 0.15) caused structural transformation as well as compensated bismuth loss during high temperature sintering. Doping of Gd in BiFeO3 also suppresses spiral spin modulation structure, which can change Fe-O-Fe bond angle or spin order resulting in enhanced ferromagnetic property.  相似文献   

2.
Bi1+xCexFeO3 (Ce–BFO) for x=0, 0.05, 0.1, and 0.15 monophasic ceramic samples were successfully synthesized by conventional solid-state reaction routes. The influences of Ce doping on structural, dielectric, ferroelectric, leakage current and capacitive properties of BiFeO3 ceramics were investigated intensively. At higher concentrations of x (x=0.1 and 0.15) the samples showed good crystallinity with almost impurity free phases. No structural phase transformation took place after partial doping of Ce ions and all ceramic bulk samples remain in their rhombohedral structure with space group R3c. The dielectric behavior of the samples improved significantly and the ferroelectric hysteresis loops changed their shape from rounded to a strongly nonlinear typical ferroelectric feature mainly originating from the domain switching and became enhanced with increase in doping concentration of cerium (Ce). Experimental results also suggested that partial doping of higher valence, smaller ionic radius Ce ions in BiFeO3 forces the reduction of oxygen vacancies, resulting in a great suppression of leakage current. It is found that the sharp capacitance peak/discontinuity present in the CV characteristics of Ce–BFO for different Ce doping concentrations is directly associated with the polarization reversal. Incorporation of excess bismuth in the presence of Ce in BiFeO3 is expected to compensate Bi loss during high temperature sintering and caused structural distortion which also favors enhancement of ferroelectric properties in Ce-doped BFO.  相似文献   

3.
This paper aims to report that impurity phase free single phase multiferroic BiFeO3 ceramic can be prepared by critically optimizing the metal ion concentration using slow step sintering schedule at 850 °C for 24 h. Antiferromagnetic character of pure BiFeO3 is completely changed and ferromagnetic behavior observed with increase of Bi as well as decrease of Fe concentration. It is found that Bi rich (Bi: 1.2) Fe deficient (Fe: 0.8) composition produces single phase rhombohedral structure with space group R3c along with enhanced ferroelectric and ferromagnetic properties. Incorporation of excess bismuth caused structural distortion and expected to compensate Bi loss during high temperature sintering. On the other hand, iron deficient helps the formation of Fe3+ state, which hinders the creation of oxygen vacancies and also favors the reduction of leakage current. Structural distortion in BiFeO3 changes Fe-O-Fe bond angle or spin order, destructs the spin cycloid and releases a locked magnetization.  相似文献   

4.
We have prepared a series of (PLZT)x(BiFeO3)1−x transparent thin films with thickness of 300 nm by a thermal pyrolysis method. Only films with x≦0.10 formed a single phase of perovskite structure. The film where x=0.10 exhibited both ferromagnetic and ferroelectric properties at room temperature with spontaneous magnetization and coercive magnetic fields of 0.0027μB and 5500 G, respectively. The remanent electric polarization and coercive electric field for the film where x=0.10 were 3.0 μC/cm2 and 24 kV/cm, respectively. Additionally, films with 0.02≦x≦0.10 showed both magneto-optical effects and the second harmonic generation of transmitted light.  相似文献   

5.
The magnetothermal properties of pseudo binary Ho1−xErxAl2 alloys have been investigated by heat capacity measurements. Two anomalies are observed in the heat capacity of HoAl2. A sharp peak at 20 K represents the first order spin reorientation transition, and a second order anomaly occurs in the vicinity of the ferromagnetic transition at 32 K. As Ho is partially replaced by Er in Ho1−xErxAl2 the sharpness of the first order heat capacity peak diminishes with increasing Er concentration, while the temperature of this transition remains practically unaffected. The second order ferromagnetic transition shifts to higher temperature region with increasing Er concentration. The observed behaviors are explained considering the geometry of 4f charge densities of Ho3+ and Er3+ and the easy magnetization directions of HoAl2 and ErAl2.  相似文献   

6.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

7.
The TbxHo0.75−xPr0.25(Fe0.9B0.1)2 (x=0, 0.1, 0.15, 0.2, 0.25, and 0.3) compounds are found to stabilize in a cubic Laves phase structure. The lattice parameter, magnetostriction (at 10 kOe), and Curie temperature are found to increase with increasing Tb content. The compound with x=0.15 exhibits a possible anisotropy compensation between the Tb and (Ho/Pr) sublattices. The easy magnetization direction rotates towards the 〈1 1 1〉 from the 〈1 0 0〉 direction, with increasing Tb content. The splitting of the (4 4 0) peak accompanied by the spontaneous magnetostriction-induced rhombohedral distortion is observed for compounds with x?0.15 and the spontaneous magnetostriction (λ1 1 1) is found to increase with Tb content.  相似文献   

8.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

9.
Multiferroics having composition Bi0.80-xBa0.20HoxFeO3 (BBFO, BBHFO5, BBHFO10, BBHFO15 and BBHFO20 for x?=?0.0, 0.05, 0.10, 0.15 and 0.20 respectively) were synthesized by method of solid state reaction. The crystal structure has been studied using X-ray diffraction technique. The X-ray patterns show enormous transform in crystal structure at concentration x?=?0.20. The Rietveld refinement of XRD patterns indicates that at concentration x?=?0.0 sample have rhombohedral structure with R3c space group while for the concentration x?=?0.05, 0.10, 0.15 and 0.20, the mixed phase including rhombohedral R3c and triclinic P1 space groups were obtained with best fitting. This phase transformation in crystal structure is observed due to mismatching of ionic radii of doped ions and parent ions. Magnetic properties of all samples were carried out by using vibrating sample magnetometry. M-H hysteresis loops shows that with doping of Ba and Ho antiferromagnetic BiFeO3 (BFO) transforms into ferromagnetic. The dielectric and ferroelectric measurements were carried out which shows that dielectric constant, dielectric loss and ferroelectric properties are enhanced with co-doping of Ho in comparison of the pristine BFO due to structure deformation and decrease in oxygen vacancies with higher concentration of Ho. Significant improvement has been observed in dielectric constant and remnant magnetization values with increasing content of Ho and decrease in the dielectric loss.  相似文献   

10.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

11.
Bi1−xDyxFeO3 (x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.12) ceramics were synthesized by solid state reaction method. Effects of Dy substitution on structural distortion, magnetic and optical properties of BiFeO3 were examined by X-ray diffraction, Raman and UV–Visible spectroscopy. The samples were found to crystallize in rhombohedral structure of BiFeO3 with R3c space group. The reduction in lattice parameters and unit cell volume indicate the distortion in FeO6 octahedra of the rhombohedral structure without any signature of phase transformation up to x=0.12. The predictable weak ferromagnetic hysteresis loops can be observed in the Dy doped samples with maximum remnant magnetization of 0.2103 emu/g for x=0.12. The weak ferromagnetism is ascribed to the suppressed spiral spin structure and magnetically active characteristic of Dy3+ ions together with ferromagnetic coupling between Dy3+ and Fe3+ ions. With optical band gap in visible region, Dy doped BiFeO3 ceramics are potential material for optoelectronic device and solar cell applications.  相似文献   

12.
BiFeO3 has been studied extensively due to its room temperature multiferroic features and has been proven as a promising candidate for device applications. But BiFeO3 possesses some drawbacks like high leakage current and complicated magnetic ordering, giving rise to a canted antiferromagnetic behavior. Hence, a superlattice approach of BiFeO3 and BaTiO3 with a good lattice matching was fabricated and the room temperature ferroelectric and ferromagnetic properties were studied. The macroscopic and local probe studies reveal a ferroelectric nature at room temperature, and most importantly a weak ferromagnetic like behavior was observed. The ferromagnetic behavior is expected to arise due to the variation introduced in the spin modulation of single BiFeO3 layer due to the superstructure formation.  相似文献   

13.
Lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1-2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of Pr=23.3 μC/cm2, d33=185 pC/N, and kp=46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.  相似文献   

14.
A systematic study of magnetoelectric composite system (x) CoFe2O4+(1−x) Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x=0, 0.15, 0.30, 0.45 and 1 was carried out. The lattice strain was calculated using Williamson and Hall equation, which depends on the content of constituent phases in composites. The microstructure was studied using scanning electron microscopy. The ferroelectric transition temperature was independent of the content of individual phases, suggesting that the ferroelectric character is maintained in the composite. Observed PE and MH loops indicate that the multiferroic nature of magnetoelectric ceramics is dependent on the content of individual phases. The variation of magnetostriction with dc magnetic field was studied. The maximum magnetoelectric voltage coefficient of 7.2 mV/cm Oe is obtained for the synthesized composites. The magnetoelectric measurements are well explained with magnetostrictive behavior of the magnetic phase.  相似文献   

15.
A series of the SmFeAsO1−xFx and GdFeAsO1−xFx (x=0.05, 0.1, 0.15, 0.2, 0.25) samples have been prepared using nano-scaled ReF3 as the fluorine resource at a relatively low temperature. The samples have been sintered at 1100 and 1120 °C for SmFeAsO1−xFx and GdFeAsO1−xFx, respectively. These temperatures are at least 50-60° lower than other previous reports. All of the so-prepared samples possess a tetragonal ZrCuSiAs-type structure. Dramatically supression of the lattice parameters and increase in Tc proved that this low temperature process was more effective to introduce fluorine into REFeAsO. Superconducting transition appeared at 39.5 K for SmFeAsO1−xFx with x=0.05 and at 22 K for GdFeAsO1−xFx with x=0.1. The highest Tc was detected to be 54 K in SmFeAsO0.8F0.2 and 40.2 K in GdFeAsO0.75F0.25. The use of the nano-scaled ReF3 compounds has improved the efficiency of the present low temperature method in synthesizing the fluorine-doped iron-based superconductors.  相似文献   

16.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

17.
Bi1–xBaxFeO3 (0.0≤x≤0.25) ceramics are prepared by chemical synthesis route. At room temperature, antiferromagnetic BiFeO3 is converted to ferromagnetic on doping Ba. A large change in the magnetization is observed around 370 °C which is close to the Neel temperature (TN) of parent compound. Another magnetic transition is also observed near 600 °C. Spin canting or impurity phase could be a probable reason for the origin of ferromagnetism in both cases. Ferroelectric and magnetic transitions of the compounds shift towards higher temperature with Ba-doping concentration. Anomaly in the dielectric constant is also observed near the TN of BiFeO3. The composition x=0.15 shows the maximum magnetic moment at room temperature while better fatigue resistance and maximum magnetoelectric coupling are observed for x=0.20 composition.  相似文献   

18.
The thermoelectric properties of Bi intercalated compounds BixTiS2 have been investigated at the temperatures from 5 to 310 K. The results indicate that Bi intercalation into TiS2 leads to substantial decrease of its electrical resistivity (one order low for x=0.05 and two orders low for x=0.15, 0.25 at 300 K) and lattice thermal conductivity (22, 115 and 158% low at 300 K for x=0.05, 0.15 and 0.25, respectively). Specially, the figure of merit, ZT, of lightly intercalated compound Bi0.05TiS2 has been improved at all temperatures investigated, and specifically reaches 0.03 at 300 K, which is about twice as large as that of TiS2.  相似文献   

19.
Structural, dielectric, and ferroelectric properties of a novel high-k ‘Y5V’ (Ba1−xLax)(Ti1−x/4−yCey)O3 ceramics (where x=0.03 and y=0.05, denoted by BL3TC5) with the highest ‘Y5V’ dielectric response (ε′>10 000) among rare-earth-doped BaTiO3 ceramics to date are investigated in detail using SEM, TEM, XRD, DSC, EPR, Raman spectroscopy (RS), temperature and frequency, electric field dependences of dielectric permittivity (ε′), and temperature and electric field dependences of ferroelectric hysteresis loops. The BL3TC5 diffusion of ferroelectric phase transition occurs around dielectric peak temperatures (Tm) near a room temperature characteristic of dielectric thermal relaxation. Powder XRD data and defect complex model were given. “Relaxor” behavior associated with an order/disorder model and formation of a solid solution were discussed. The EPR results provided the evidence of Ti vacancies as compensating for lattice defects. High-k relaxor nature of BL3TC5 is characterized by an average cubic structure with long-range lattice disordering and local polar ordering; a slow change of the ε′ (T) and Pr(T) curves around Tm; no phase transition observed by DSC; and a broad, red-shifted A1 (TO2) Raman phonon mode at 251 cm−1 accompanying the disappearance of the “silent” mode at 305 cm−1 and a clear anti-resonance effect at 126 cm−1 at room temperature.  相似文献   

20.
The multiferroic behavior of epitaxial γ-Fe2O3-BiFeO3 (composite)/Bi3.25La0.75Ti3O12 bi-layered heterostructures grown on SrRuO3/SrTiO3 (1 1 1) substrates has been studied using piezoresponse force microscopy, magnetic force microscopy and magnetometry. The ferroelectric domain structure is ascribed to the BiFeO3 phase while the magnetism originates in the γ-Fe2O3 phase of the composite layer. Our studies demonstrate the presence and switching of magnetic and ferroelectric domains within the same area of the sample. This confirms the presence of multiferroic behavior at the nanoscale in our γ-Fe2O3-BiFeO3 nanocomposite thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号