首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
myo‐Inositol, a naturally occurring cyclic hexaol, was converted to 2,4,6‐tri‐O‐allyl‐myo‐inositol and 1,2,3,4,5,6‐hexa‐O‐allyl‐myo‐inositol. Polyaddition of the former product, a tri(allyl ether) bearing three hydroxyl groups, with dithiols yielded the corresponding networked polymers. Their glass transition temperatures (Tgs) were higher than those of networked polymers formed by the polyaddition of 1,3,5‐tri‐O‐methyl‐2,4,6‐tri‐O‐allyl‐myo‐inositol. This implied the reinforcement of the networks by hydrogen bonding between the hydroxyl groups. Polyaddition of the latter product, a hexa(allyl ether), with dithiols yielded the corresponding networked polymers with much higher Tgs than those of all of the aforementioned networked polymers. This implied that efficient use of the hexafunctional monomer leads to the formation of more densely crosslinked polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1524–1529  相似文献   

2.
A route from naturally occurring myo‐inositol to hydroxyl‐bearing polyurethanes has been developed. The diol prepared from the bis‐acetalization of myo‐inositol with 1,1‐dimethoxycyclohexane was reacted with a rigid diisocyanate, 1,3‐bis(isocyanatomethyl)cyclohexane to afford the corresponding polyurethane, of which glass transition temperature (Tg) was quite high as 192 °C. The polyurethane contains side chains inherited from the acetal moieties of the diol monomer and was treated with trifluoroacetic acid to hydrolyze the acetal moieties and afford the target polyurethane functionalized with hydroxyl groups. The presence of many hydroxyl groups in the side chains, which can form hydrogen bonds with each other, resulted in a high Tg, 186 °C. In addition, the hydroxyl groups were reacted with isocyanates to achieve further side‐chain modifications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1358–1364  相似文献   

3.
The synthesis and characterization of innovative difunctional styrene‐based monomers and their cyclopolymerization is reported. Difunctional silyl‐based protecting groups with different steric hindrance (either methyl/phenyl or phenyl/phenyl) are used as “tethers” for two 4‐vinylbenzyl reactive moieties. We demonstrate that efficient cyclopolymerization, performed under free‐radical conditions or RAFT‐mediated, takes place for both monomers. RAFT polymerization allows excellent control of Mn and higher degree of polymerization when compared to uncontrolled radical polymerization, yet not optimal control of dispersities. The silyl tethering group could be removed to afford poly(p‐hydroxymethylstyrene). Thermogravimetric analysis (TGA) demonstrates the thermal robustness of the new cyclopolymers, and gives an insight on the ability of the corresponding deprotected polymer to chelate metals ions. The described strategy opens possibilities to achieve sequence control through a cyclopolymerization/tether removal strategy, when having two suitable aromatic systems with opposing electronic character and reactivities in chain cyclopolymerization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1593–1599  相似文献   

4.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

5.
Dimethacrylates with rigid adamantane-like cores were synthesized from myo-inositol orthoester via a sequence of (a) acylation or silylation of the equatorially oriented hydroxyl group, followed by (b) attachment of methacrylate groups on the axially oriented hydroxyl groups. The radical homopolymerization of these compounds proceeded via cyclopolymerization without crosslinking, as the two axially oriented methacrylate groups were fixed in close proximity with each other. The dimethacrylates underwent radical copolymerization with methyl methacrylate (MMA) to afford the corresponding polymethacrylates, exhibiting high glass transition temperatures (Tg), due to the introduction of the rigid orthoester moieties originating from the monomers and the macrocyclic structures formed via intramolecular cyclization of the two methacrylate groups of the monomers. The polymers obtained by polymerization of the dimethacrylate bearing a silylated hydroxyl group served as precursors of hydroxyl-bearing polymers, which also exhibited high Tg due to the formation of a hydrogen bonding network between the hydroxyl groups.  相似文献   

6.
New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers contain N‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring. N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 70–76  相似文献   

7.
Redox‐active polymers enhanced the focus of attention in the field of battery research in recent years. Anthraquinone is one of the most generic redox‐active functional compounds for battery applications, because the quinonide structure undergoes a redox reaction involving two electrons and features stable electrochemical behavior. Although various redox‐active polymers have been developed, the polymer backbone is mostly based on linear alkyl chains [e.g., poly(methacrylate)s, poly(ether)s]. Polymers featuring ring structures in the backbone are limited due to the restricted availability of suitable polymerization techniques [e.g., poly(norbornene)s by ROMP]. The cyclopolymerization of dienes with pendant redox‐active anthraquinone moieties by Pd catalysis represents a novel approach to synthesize redox‐active polymers featuring cyclic structures in the backbone. Electrochemical investigations, in particular cyclic voltammetry, of these new diene monomer, polymers and the corresponding polymer supported carbon paper composites were conducted in different organic electrolytes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2184–2190  相似文献   

8.
This paper deals with a triallyl monomer bearing a rigid adamantane‐like core derived from myo‐inositol, a naturally occurring cyclic hexaol. The core structure of the monomer can be readily constructed by orthoesterification of myo‐inositol. The polyaddition of the triallyl monomer with dithiols based on the thermally induced radical thiol‐ene reaction gives the corresponding networked polymers. These networked polymers exhibit much higher thermal stability than the comparative networked polymers obtained from a triallyl monomer bearing less rigid cyclohexyl core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1193–1199  相似文献   

9.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

10.
Oligo(spiroketal)s (OSKs) were synthesized from myo‐inositol, a naturally occurring cyclic compound bearing six hydroxyl groups. The successful synthesis of OSKs was achieved using silyl ethers 2 derived from 1,4‐di‐O‐alkylated myo‐inositol 1 as monomers, which underwent polycondensation with 1,4‐cyclohexanedione (CHD) at 0 °C in the presence of trimethylsilyl triflate as a catalyst. Because of the irreversible nature of the condensation reaction of silyl ethers with ketones, the resulting OSKs 7 had higher molecular weights than previously reported OSKs that were obtained by polycondensation of tetraols 1 with CHD, where backward hydrolysis of the ketal functions occurred. In addition, another series of OSKs, 8, were synthesized using silyl ethers 3 derived from 2,5‐di‐O‐alkylated myo‐inositol 6 , which are more symmetric monomers than silyl ethers 2 . Silyl ethers 3 underwent efficient polycondensation with CHD, whereas tetraol 6 did not, demonstrating that the derivation of such tetraols into the corresponding silyl ethers is a powerful strategy to access OSKs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2407–2414  相似文献   

11.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

12.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

13.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

14.
A new trithiocarbonate 1 bearing two hydroxyl moieties was synthesized and employed as a RAFT agent for radical polymerization of vinyl monomers. 1 mediated RAFT polymerizations of styrene and ethyl acrylate to give the corresponding polymers with predictable molecular weights and narrow molecular weight distributions. Structural analyses of the polymers with NMR and MALDI‐TOF mass techniques revealed that they were telechelic ones, of which both chain ends were endowed with hydroxyl groups inherited from trithiocarbonate 1 . Usefulness of these telechelic polymers as polymeric diol‐type building blocks was demonstrated in their polyaddition with diisocyanates, which gave the corresponding polyurethanes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Comb‐branched polyelectrolytes with polyacrylamide backbones and poly[(2‐dimethylamino)ethyl methacrylate methylsulfate] (polyDMAEMA‐DMS) side chains were prepared by free‐radical macromonomer polymerization. PolyDMAEMA‐DMS macromonomers bearing terminal styrenic moieties were synthesized by living anionic polymerization with lithium 4‐vinylbenzylamide (LiVBA) and lithium N‐isopropyl‐4‐vinylbenzylamide (LiPVBA) as initiators. In the presence of LiCl, LiPVBA initiated a living polymerization of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and produced polymers with well‐controlled molecular weights and low polydispersities. LiVBA could not directly initiate DMAEMA polymerization. After being capped with two units of dimethylacrylamide, DMAEMA polymerized with an initiator efficiency of 63%. The quaternization of the poly[(2‐dimethylamino)ethyl methacrylate] macromonomer with dimethyl sulfate yielded the cationic polyDMAEMA‐DMS macromonomer. The polyDMAEMA‐DMS macromonomer had a much higher reactivity than acrylamide in free‐radical polymerization. This might have been due to the formation of polyDMAEMA‐DMS micelles in the polymerization system. The high macromonomer reactivity caused composition drift in a batch process. A semibatch method with a constant polyDMAEMA‐DMS feed rate was used to control the copolymer composition. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2394–2405, 2002  相似文献   

16.
A modular and facile route has been developed to synthesize functionalized 2,5‐di(thiophen‐2‐yl)‐1‐H‐arylpyrroles from readily available starting materials. These units are compatible with various polymerization conditions and are versatile building blocks for conjugated polymers. The polymers show high thermal stability and solubility in a number of solvents. Characterization of the polymers reveals a correlation between molecular packing, controllable by polymer design, and charge carrier mobility. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1133–1139  相似文献   

17.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

18.
Homopolymers of 2‐(trimethylsiloxy)ethyl methacrylate of degrees of polymerization from 5 to 50 were synthesized by group transfer polymerization in tetrahydrofuran (THF) using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene as the initiator and tetrabutylammonium bibenzoate as the catalyst. These polymers were first converted to poly[2‐(hydroxy)ethyl methacrylate]s by removal of the trimethylsilyl‐protecting groups by acidic hydrolysis, and subsequently transformed to poly{2‐[(3,5‐dinitrobenzoyl)oxy]ethyl methacrylate}s by reaction with 3,5‐dinitrobenzoyl chloride in the presence of triethylamine. Gel permeation chromatography in THF and proton nuclear magnetic resonance (1H NMR) spectroscopy in CDCl3 and d6 dimethyl sulfoxide were used to characterize the polymers in terms of their molecular weight and composition. The molecular weights were found to be close to the values expected from the polymerization stoichiometry and the molecular weight distributions were narrow, with polydispersity indices around 1.1. The hydrolysis and reesterification steps were found to be almost quantitative for all polymers. Differential scanning calorimetry and thermal gravimetric analysis were also employed to measure the glass transition temperatures (Tg 's) and decomposition temperatures, which were determined to be approximately 80 and 320 °C, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1457–1465, 2000  相似文献   

19.
N‐Isopropyl‐4‐vinylbenzylamine (PVBA) was synthesized and used as an initiator for the polymerization of methacrylates to synthesize macromonomers with terminal styrenic moieties. LiPVBA initiated a living polymerization and block copolymerization of methyl methacrylate, 2‐(N,N‐dimethylamino)ethyl methacrylate and tert‐butyl methacrylate and produced polymers having well‐controlled molecular weights and very low polydispersities (w/n < 1.1) in quantitative yield. 1H NMR analysis revealed that the polymers contained terminal 4‐vinylbenzyl groups. The macromonomers were reactive in the copolymerization with styrene.  相似文献   

20.
Naturally occurring myo‐inositol was developed into a highly rigid diol by converting its 3,4‐ and 1,6‐vicinal diols in trans configuration into the corresponding butane‐2,3‐diacetals. The resulting diol bearing 6‐6‐6 fused ring system, in which conformational change is strictly suppressed, was combined with diisocyanates to perform polyadditions. The resulting polyurethanes were analyzed by differential scanning calorimetry, and it was found that their glass transition temperatures were much higher than those of the previously reported myo‐inositol‐derived polyurethanes, which were synthesized from a myo‐inositol‐derived diol bearing 5‐6‐5 fused ring system. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3798–3803  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号