首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

2.
Conjugated copolymers based on benzodithiophene (BDT) derivatives and thiophene‐quinoxaline‐thiophene (TQT) segments represent an efficient class of light harvesting materials for organic photovoltaic (OPV) applications. Commonly, BDT‐TQT copolymers are synthesized by Stille cross‐coupling polymerization. In this study, alkoxy and thienyl functionalized alternating BDT‐alt‐TQT copolymers are synthesized by direct arylation polymerization (DArP), using Ozawa conditions. An extensive optimization of the reaction conditions such as the catalytic system, solvent, temperature, base, and the concentration of the catalyst is accomplished. The optical and electrochemical properties of the copolymers obtained by DArP are compared to the reference polymers synthesized by Stille cross‐coupling polymerization. Finally, the optimized BDT‐alt‐TQT copolymers are incorporated into organic solar cells as electron donors. The solar cells of the DArP copolymers exhibit power conversion efficiencies up to 80% (rel.) of their Stille cross coupling analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1457–1467  相似文献   

3.
Neodymium‐based catalysts coordinated with phosphate ligands (NdCl3·3L), where L = triethyl phosphate (TEP) or tris(2‐ethylhexyl) phosphate (TEHP), were synthesized. The ring‐opening polymerizations (ROP) of ɛ‐caprolactone (ɛ‐CL) with these catalysts in the presence of benzyl alcohol initiator were performed, yielding polymers with well‐defined molecular weights and relatively narrow polydispersity index (PDI = 1.22–1.65). In situ NMR analysis of the reaction between NdCl3·3TEP and benzyl alcohol indicated that ROP proceeds through a coordination‐insertion mechanism. The end groups of the resultant polymers were determined using MALDI‐ToF mass spectrometry and NMR spectroscopy. The quasi‐living nature of this catalytic system was demonstrated by kinetic studies and the successful synthesis of the block copolymer poly(ɛ‐caprolactone)‐block‐poly(l ‐lactide) by sequential monomer addition. Kinetic studies revealed that the catalyst with the bulkier TEHP ligand increased the rate of ROP of ɛ‐CL as compared to the TEP ligand. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1289–1296  相似文献   

4.
(E)‐1,3‐Pentadiene (EP) and (E)‐2‐methyl‐1,3‐pentadiene (2MP) were polymerized to cis‐1,4 polymers with homogeneous and heterogeneous neodymium catalysts to examine the influence of the physical state of the catalyst on the polymerization stereoselectivity. Data on the polymerization of (E)‐1,3‐hexadiene (EH) are also reported. EP and EH gave cis‐1,4 isotactic polymers both with the homogeneous and with the heterogeneous system, whereas 2MP gave an isotactic cis‐1,4 polymer with the heterogeneous catalyst and a syndiotactic cis‐1,4 polymer, never reported earlier, with the homogeneous one. For comparison, the results obtained with the soluble CpTiCl3‐based catalyst (Cp = cyclopentadienyl), which gives cis‐1,4 isotactic poly(2MP), are examined. A tentative interpretation is given for the mechanism of the formation of the stereoregular polymers obtained and a complete NMR characterization of the cis‐1,4‐syndiotactic poly(2MP) is reported. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3227–3232  相似文献   

5.
A new dicarboxylic acid monomer, 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane, bearing a pendent tert‐butylcyclohexylidene group was prepared in three steps from 4‐tert‐butylcyclohexanone. The monomer was reacted with various diamines to produce a series of new polyamides with triphenyl phosphite and pyridine as condensing agents. These polyamides were produced with inherent viscosities of 0.74 to 1.02 dL g−1. All the polymers were characterized by X‐ray diffraction that revealed this amorphous nature. These polymers exhibited excellent solubility in a variety of solvents. Almost all the polymers could be dissolved in N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, dimethyl sulfoxide, pyridine, and even in tetrahydrofuran and cyclohexanone. These polymers showed glass‐transition temperatures between 223 and 256 °C and decomposition temperatures at 10% weight loss ranging from 468 to 491 °C and 469 to 498 °C in nitrogen and air atmospheres, respectively. Transparent, tough, and flexible films of these polymers were cast from the DMAc solutions. These polymer films had tensile strengths ranging from 76 to 99 MPa, elongations at break from 7 to 19%, and initial moduli from 2.1 to 2.7 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 797–803, 2000  相似文献   

6.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

7.
α‐Methyleneglutaric acid, a metabolite of niacin (nicotinic acid), can be easily converted to its cyclic anhydride. We report here the first conversion of α‐methyleneglutaric anhydride to (a series of) α‐methyleneglutarimides. These monomers can be radically polymerized to the title polymers. These have relatively high glass transition properties compared to the lower homologs derived from itaconimides (α‐methylenesuccinimides). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1020–1026  相似文献   

8.
A monomode microwave reactor was used for the synthesis of designed star‐shaped polymers, which were based on dipentaerythritol with six crystallizable arms of poly(ε‐caprolactone)‐b‐poly(L ‐lactide) (PCL‐b‐PLLA) copolymer via a two‐step ring‐opening polymerization (ROP). The effects of irradiation conditions on the molecular weight were studied. Microwave heating accelerated the ROP of CL and LLA, compared with the conventional heating method. The resultant hexa‐armed polymers were fully characterized by means of FTIR, 1H NMR spectrum, and GPC. The investigation of thermal properties and crystalline behaviors indicated that the crystalline behaviors of polymers were largely depended on the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Thermoresponsive polymers that undergo a solubility phase transition in water are important as basis for the development for a wide variety of responsive and smart materials. In this study, the synthesis of thermoresponsive copolymers is demonstrated by the straightforward one‐pot statistical postpolymerization modification of well‐defined poly(2‐isopropenyl‐2‐oxazoline) (PiPOx) by ring‐opening reaction with multiple carboxylic acids. The reactions are carried out using dual, triple, and quadruple mixtures of up to four different aliphatic carboxylic acids. The cloud point temperatures of the resulting polymethacrylamide copolymers with ester pendent groups can be finely tuned by adjusting the feed ratio and the hydrophilic–hydrophobic balance of the acids that are used for the ring‐opening modification of PiPOx. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 360–366  相似文献   

10.
Random copolymerizations of L ‐lactide with (R)‐, (S)‐, or rac‐1‐methyltrimethylene carbonate with bis(pentamethylcyclopentadienyl) samarium‐methyl tetrahydrofuranate [(C5Me5)2SmMe(THF)] as a novel initiator provided high molecular weight polymers with low polydispersities. Biodegradation of the resulting polymers with tricine and {N‐[tris(hydroxymethyl)methyl]‐2‐aminoethane sulfonic acid (TES) buffers as well as activated sludge showed only a small weight loss, whereas the polymer with proteinase K revealed high biodegradability independent of the optical activity of 1‐methyltrimethylene carbonate. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3916–3927, 2001  相似文献   

11.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐co‐VAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   

13.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

14.
The para‐fluoro‐thiol “click” reaction (PFTCR) was utilized to prepare linear and hyperbranched fluorinated poly (aryl ether‐thioether). For this purpose, 1,2‐bis(perfluorophenoxy)ethane was prepared and reacted with 1,6‐hexandithiol and trimethylolpropane tris(3‐mercaptopropionate), respectively. While hyperbranched polymers were prepared using 0.5 M concentrations of starting materials at room temperature, the linear polymer syntheses were performed at different reaction temperatures and concentrations. The resulting polymers were mainly characterized by NMR measurements and a very distinct fluorine signals regarding meta‐ and ortho‐ positions in the 19F NMR were found for both polymer topologies. In addition to NMR analyses, both linear and hyperbranched polymers were further characterized by using Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1853–1859  相似文献   

15.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Post‐polymerization modification (PPM) of polymers is extremely beneficial in terms of designing brand new synthetic pathways toward functional complex polymers. Fortunately, the new developments in the field of organic chemistry along with controlled/living radical polymerization (CLRP) techniques have enabled scientists to readily design and synthesize the functionalized‐polymers for wide range of applications via the PPM. In this regard, the reactivity of para‐fluorine atom in the fluorinated aromatic structures toward the nucleophilic substitution reactions has made the polymers possessing this group to become a very strong candidate that can undergo efficient PPM. Besides, it has been proven that the thiol‐functionalized compounds react with the para‐fluorine atom of the pentafluorophenyl group more rapidly and efficiently than the amine‐ and the hydroxyl‐functionalized compounds. Furthermore, the milder experimental conditions to achieve quantitative conversions have led to the reaction between the thiol and the structures possessing pentafluorophenyl groups to be referred to as a click‐type reaction. Given this information, this review article aims to present the scientific developments regarding the thiol‐para‐fluoro “click” (TPF‐click) chemistry, and its impact on PPM to construct novel polymeric structures. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1181–1198  相似文献   

17.
Herein, we report the synthesis, characterization, and field‐effect properties of two cross‐conjugated dithienylmethanone (DMO)‐based alternating polymers, namely, PDMO‐S and PDMO‐Se . Both polymers possess high thermal stability, good solubility, and broad absorption spectra. Their electrochemical properties were investigated using cyclic voltammetry, indicating that PDMO‐Se has higher HOMO/LUMO energy levels of −5.49/−3.49 eV than −5.57/−3.58 eV of PDMO‐S . The two polymers exhibited promising charge transport properties with the highest hole mobility of 0.12 cm2 V−1 s−1 for PDMO‐S and 0.025 cm2 V−1 s−1 for PDMO‐Se . AFM and 2D‐GIXRD analyses demonstrated that the PDMO‐S formed lamellar, edge‐on packing thin film with close ππ stacking. These findings suggest that cross‐conjugated polymers might be potential semiconducting materials for low‐cost and flexible organic electronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1012–1019  相似文献   

18.
The synthesis, characterization, and ring‐opening polymerization of a new cyclic carbonate monomer containing an allyl ester moiety, 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC), was performed for the first time. MAC was synthesized in five steps in good yield beginning from the starting material, 2,2‐bis(hydroxymethyl)propionic acid. Subsequent polymerization and copolymerizations of the new cyclic carbonate with rac‐lactide (rac‐LA) and ?‐caprolactone (CL) were attempted. Rac‐LA copolymerized well with MAC, but CL copolymerizations produced insoluble products. Oligomeric macroinitiators of MAC and rac‐LA were synthesized from stannous ethoxide, and both macroinitiators were used for the controlled ring‐opening polymerization of rac‐LA. The polymerization kinetics were examined by monitoring the disappearance of the characteristic C? O ring stretch of the monomer at 1240 cm?1 with real‐time in situ Fourier transform infrared spectroscopy. Postpolymerization oxidation reactions were conducted to epoxidize the unsaturated bonds of the MAC‐functionalized polymers. Epoxide‐containing polymers may allow further organic transformations with various nucleophiles, such as amines, alcohols, and carboxylic acids. NMR was used for microstructure identification of the polymers, and size exclusion chromatography and differential scanning calorimetry were used to characterize the new functionalized poly(ester‐carbonates). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1978–1991, 2003  相似文献   

19.
The monomer 5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine was satisfactory obtained through the heterocoupling reaction of 5‐ethynyl‐N,N‐dimethylnaphthalen‐1‐amine and 4‐(5‐iodo‐1‐naphthyl)‐2‐methyl‐3‐butyn‐2‐ol catalyzed by a palladium–copper system, followed by acetone elimination. Poly{5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine} was obtained through the reaction of the acetylene monomer with homogeneous rhodium and palladium catalyst complexes. The structure of the polymers always showed a trans–cisoidal chain configuration on the basis of IR and NMR spectra. Moreover, only for the rhodium catalyst complex in methanol was a dimeric product isolated in a very low yield, having a conjugated terminal ene–yne structure, which permitted the consideration of a metallated chain‐transfer intermediate in the polymer propagation. The mass determination of the polymers, by osmometry and gel permeation chromatography techniques, showed low average molecular weights. The kinetics of the catalyzed polymerization were analyzed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2038–2047, 2007  相似文献   

20.
A novel vinyl‐hydantoin monomer, 3‐(4′‐vinylbenzyl)‐5,5‐dimethylhydantoin, was synthesized in a good yield and was fully characterized with Fourier transform infrared (FTIR) and 1H NMR spectra. Its homopolymer and copolymers with several common acrylic and vinyl monomers, such as vinyl acetate, acrylonitrile, and methyl methacrylate, were readily prepared under mild conditions. The polymers were characterized with FTIR and 1H NMR, and their thermal properties were analyzed with differential scanning calorimetry studies. The halogenated products of the corresponding copolymers exhibited potent antibacterial properties against Escherichia coli, and the antibacterial properties were durable and regenerable. The structure–property relationships of the polymers were further discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3348–3355, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号