首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complex-forming CH + H2 --> CH2 + H reaction is studied employing a recently developed global potential energy function. The reaction probability in the total angular momentum J = 0 limit is estimated with a four-atom quantum wave packet method and compared with classical trajectory and statistical theory results. The formation of complexes from different reactant internal states is also determined with wave packet calculations. While there is no barrier to reaction along the minimum energy path, we find that there are angular constraints to complex formation. Trajectory-based estimates of the low-pressure rate constants are made and compared with experimental results. We find that zero-point energy violation in the trajectories is a particularly severe problem for this reaction.  相似文献   

2.
An unusual mechanism in the reaction, O(3P) + HCl --> ClO + H, dominates at hyperthermal collision energies. This mechanism applies to collision geometries in which the H atom in the HCl molecule is oriented toward the reagent O atom. As the Cl-O bond forms, the H atom experiences a strong repulsive force from both the O and Cl atoms. The ClO product scatters forward with respect to the initial velocity of the O atom, and the H atom scatters backward. This mechanism accounts for more than half the reactive trajectories at energies >110 kcal mol-1, but it does not involve motion near the minimum energy path, which favors an SN2-like reaction mechanism where the H atom is oriented away from the reagent O atom during the collision.  相似文献   

3.
The initial state-selected time-dependent wave packet approach is employed to study the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H, HOH' + D exchange reactions with both OH bonds in the H(2)O reactant and OH(D) bond in the HOD reactant treated as reactive bonds. The total reaction probabilities for different partial waves, as well as the integral cross sections, which are the exact CC (coupled-channel) results, are first obtained in this study for the H(2)O(HOD) reactant initially in the ground rovibrational state. Because of the shallow C(3v) minimum along the reaction path, the reaction probabilities for the three reactions present several resonance peaks, with one dominant resonance peak just above the threshold. The cross sections for the H' + HOD → HOH' + D reaction are substantially smaller than those for the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H reactions, indicating that the H'/H exchange reactions are much more favored. In the CC calculations, the resonance peaks in the reaction probabilities diminish quickly with the increase in total angular momenta J, resulting in the existence of a clear step-like feature just above the threshold in the cross sections for the title reactions, which manifests the signature of shape resonances in these reactions. In the CS calculations, the resonance peaks on reaction probabilities persist in many partial waves, and thus the resonance structures can no longer survive the partial-wave summation and are washed out completely in the CS cross sections for the title reactions.  相似文献   

4.
Classical trajectories are calculated on model designed to reproduce the reactive—unreactive bands found with the SSMK and Yates—Lester surfaces for the H + H2 system and other A + BC systems. The model surfaces are based on a rectilinear reaction path, with a constant period of vibration, and have an exit region corresponding to reaction. A simple surface obtained by taking a cut at constant RBC though a collinear potential-energy function is not as satisfactory as one to which a platform has been added to allow for the zero-point energy normal to the minimum reaction path. General principles are derived for obtaining reaction probabilities and reactive—unreactive boundaries for such surfaces. The model surfaces predict the bands in a general way, and throw light on the reason they occur, but do not lead to quantitative predictions.  相似文献   

5.
用Penning型离子阱经碰撞反应H2++H2→H4+产生稳定的H4+。主要的反应产物是H3+,但十分明显地观测到H4+信号。H4+在阱中稳定存在时间长达0.1s量级。远比Kirchner等人测量的10-6s量级长。最后讨论了生成H4+的反应过程机制。  相似文献   

6.
Calculations for the cumulative reaction probability N(E) (for J=0) and the thermal rate constant k(T) of the H+CH(4)-->H(2)+CH(3) reaction are presented. Accurate electronic structure calculations and a converged Shepard-interpolation approach are used to construct a potential energy surface which is specifically designed to allow the precise calculation of k(T) and N(E). Accurate quantum dynamics calculations employing flux correlation functions and multiconfigurational time-dependent Hartree wave packet propagation compute N(E) and k(T) based on this potential energy surface. The present work describes in detail the various convergence test performed to investigate the accuracy of the calculations at each step. These tests demonstrate the predictive power of the present calculations. In addition, approximate approaches for reaction rate calculations are discussed. A quite accurate approximation can be obtained from a potential energy surface which includes only interpolation points on the minimum energy path.  相似文献   

7.
The reaction H + ClCH3 has theoretically studied in a LEPS potential energy surface with a single-particle approximation for the methyl group. The LEPS adjustable parameters were selected to reach a good agreement with experimental values of activation energy and exothermicity. A wide set of quasi-classical trajectories for that system has been calculated within a energy range covering the significative values of relative velocities at temperatures between 300 and 1000 K. Calculated reactive cross sections increase with translational energy and with the initial vibrational level, but they are not influenced by rotational excitation of the reactants. Microscopic and total reaction rate constants have been obtained within the temperature range and agree quite well with available experimental results. Final energy distribution shows that most of the exoergicity is consumed in increasing the relative velocity of the products, while HCl molecules remain in their vibrational ground state.  相似文献   

8.
This study uses computational chemistry and statistical reaction rate theory to investigate the chemically activated reaction of diacetylene (butadiyne, C(4)H(2)) with the propargyl radical (C˙H(2)CCH) and the reaction of acetylene (C(2)H(2)) with the i-C(5)H(3) (CH(2)CCCC˙H) and n-C(5)H(3) (CHCC˙HCCH) radicals. A detailed G3SX-level C(7)H(5) energy surface demonstrates that the C(3)H(3) + C(4)H(2) and C(5)H(3) + C(2)H(2) addition reactions proceed with moderate barriers, on the order of 10 to 15 kcal mol(-1), and form activated open-chain C(7)H(5) species that can isomerize to the fulvenallenyl radical with the highest barrier still significantly below the entrance channel energy. Higher-energy pathways are available leading to other C(7)H(5) isomers and to a number of C(7)H(4) species + H. Rate constants in the large multiple-well (15) multiple-channel (30) chemically activated system are obtained from a stochastic solution of the one-dimensional master equation, with RRKM theory for microcanonical rate constants. The dominant products of the C(4)H(2) + C(3)H(3) reaction at combustion-relevant temperatures and pressures are i-C(5)H(3) + C(2)H(2) and CH(2)CCHCCCCH + H, along with several quenched C(7)H(5) intermediate species below 1500 K. The major products in the n-C(5)H(3) + C(2)H(2) reaction are i-C(5)H(3) + C(2)H(2) and a number of C(7)H(4) species + H, with C(7)H(5) radical stabilization at lower temperatures. The i-C(5)H(3) + C(2)H(2) reaction predominantly leads to C(7)H(4) + H and to stabilized C(7)H(5) products. The title reactions may play an important role in polycyclic aromatic hydrocarbon (PAH) formation in combustion systems. The C(7)H(5) potential energy surface developed here also provides insight into several other important reacting gas-phase systems relevant to combustion and astrochemistry, including C(2)H + the C(3)H(4) isomers propyne and allene, benzyne + CH, benzene + C((3)P), and C(7)H(5) radical decomposition, for which some preliminary analysis is presented.  相似文献   

9.
The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.  相似文献   

10.
Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.  相似文献   

11.
Direct dynamics classical trajectory simulations were performed to study product energy partitioning in C(2)H(5)F-->C(2)H(4)+HF dissociation. The intrinsic reaction coordinate potential energy curve, reaction energetics, and transition state (TS) properties were calculated for this reaction at different levels of electronic structure theory, and MP2/6-31G( *) was chosen as a meaningful and practical method for performing the direct dynamics. The trajectories show that the HF bond, uncoupled from the other degrees of freedom, is formed within the first 10 fs as the system moves from the TS towards products. The populations of the HF vibration states, determined from the simulations, decrease monotonically as found from experiments. However, the simulation's populations for the low and high energy vibration states are larger and smaller, respectively, than the experimental results. The HF rotational temperature found from the simulations is in agreement with experiment. Increasing the TS's excess energy gives higher rotational temperatures for both C(2)H(4) and HF. Energy is partitioned to the products from both the excess energy in the TS and the potential energy release in the exit channel. Partitioning from these two energy sources is distinguished by varying the TS's excess energy. An analysis of the simulation's energy disposal shows that the fractions of the excess energy partitioned to relative translation, C(2)H(4) vibration, C(2)H(4) rotation, HF vibration, and HF rotation, are 0.17, 0.64, 0.076, 0.067, and 0.046, respectively, and are in good agreement with previous simulations on empirical potentials and experiments. The partitioning found for the potential energy release is 81%, <0.05%, 5%, 11%, and 3% to relative translation, C(2)H(4) vibration, C(2)H(4) rotation, HF vibration, and HF rotation. This result is substantially different than the deduction from experiments, which summarizes the partitioning as 20%, 45%, 24%, and <12% to relative translation, C(2)H(4) vibration+rotation, HF vibration, and HF rotation. Possible origins of the difference between the simulations and experiments in the release of the potential energy is discussed.  相似文献   

12.
A potential energy surface has been calculated for the competing associative and reactive ion-molecule processes involving the reactants C3H(+) + H2. Our ab initio results show that the linear ion C3H+ and H2 can directly access the deep potential well of the propargyl ion H2CCCH+, which is calculated to lie 390 kJ mol-1 below the zero-point energy of the reactants. Isomerization between the propargyl ion and the lower energy, cyclic C3H3+ ion, calculated to lie 501 kJ mol-1 below the zero-point energy of reactants, can subsequently occur via two pathways. One of these pathways involves a transition state lying 22 kJ mol-1 below the energy of the reactants while the other, which occurs at much lower energies, involves two transition states and an intermediate. The dissociation of c-C3H3+ into c-C3H2(+) + H is calculated to occur directly, without any intermediate potential energy maximum, but the energy of the products lies 7.3 kJ mol-1 above the energy of the reactants. Using the minimum energy potential pathway and properties of the stationary point structures determined via ab initio methods, we have calculated both the association rate coefficient to produce C3H3+ as a function of density and the branching ratio between the propargyl and cyclic structures of the ion. Our results are in good agreement with some experimental results and in conflict with others. Specifically, we agree with the 1:1 branching ratio measured for the propargyl and cyclic isomers of C3H3+ at 80 and 300 K and we agree with the rate coefficient for radiative association measured at 80 K. We cannot reproduce reported measurements that the reactive channel (C3H2(+) + H) is the dominant channel at 80 K and at low gas densities, or that the association channel at high densities saturates at an effective rate coefficient well below the Langevin value -2x10(-11) cm3 s-1 at 300K and 1x10(-10) cm3 s-1 at 80K.  相似文献   

13.
14.
HNCS与CH2(X2Π)反应微观动力学的理论研究   总被引:1,自引:0,他引:1  
用量子化学密度泛函理论的UB3LYP/6-311+G**方法和高级电子相关的UQCISD(T)/6-311+G**方法研究了异硫氰酸(HNCS)与乙炔基自由基(C2H(X2Π))反应的微观机理. 采用双水平直接动力学方法IVTST-M, 获取反应的势能面信息, 应用正则变分过渡态理论并考虑小曲率隧道效应, 计算了在250~2500 K温度范围内反应的速率常数. 研究结果表明, HNCS与C2H(X2Π)反应为多通道、多步骤的复杂反应, 共存在三个可能的反应通道, 主反应通道为通过分子间H原子迁移, 生成主要产物NCS+C2H2. 反应速率常数随温度升高而增大, 表现为正温度效应. 速率常数计算中变分效果很小. 在低温区隧道效应对反应速率的贡献较大, 反应为放热反应.  相似文献   

15.
A simple four-parameter function is shown to possess adequate flexibility to fit the H + H2 →H2 + H and Li + H2 → LiH + H exchange reaction energy surfaces to good accuracy along the reaction paths.  相似文献   

16.
Full-dimensional, density functional theory (B3LYP/6-311g(d,p))-based potential energy surfaces (PESs) are reported and used in quasi-classical calculations of the reaction of C with C(2)H(2). For the triplet case, the PES spans the region of the reactants, the complex region (with numerous minima and saddle points) and the products, linear(l)-C(3)H+H, cyclic(c)-C(3)H+H and c-(3)C(3)+H(2). For the singlet case, the PES describes the complex region and products l-C(3)H+H, c-C(3)H+H and l-(1)C(3)+H(2). The PESs are invariant under permutation of like nuclei and are fit to tens of thousands of electronic energies. Energies and harmonic frequencies of the PESs agree well the DFT ones for all stationary points and for the reactant and the products. Dynamics calculations on the triplet PES find both l-C(3)H and c-C(3)H products, with l-C(3)H being dominant at the energies considered. Limited unimolecular reaction dynamics on the singlet PES find both products in comparable amounts as well as the C(3)+H(2) product.  相似文献   

17.
An exhaustive dynamics study was performed at two collision energies, 1.52 and 2.20 eV, analyzing the effects of the asymmetric (nu3) stretch mode excitation in the reactivity and dynamics of the gas-phase H + CH4 reaction. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were performed on an analytical potential energy surface previously developed by our group. First, strong coupling between different vibrational modes in the entry channel was observed, indicating that energy can flow between these modes, and therefore that they do not preserve their adiabatic character along the reaction path; i.e., the reaction is nonadiabatic. Second, we found that the reactant vibrational excitation has a significant influence on the vibrational and rotational product distributions. With respect to the vibrational distribution, our results confirm the purely qualitative experimental evidence, although the theoretical results presented here are also quantitative. The rotational distributions are predictive, because no experimental data have been reported. Third, with respect to the reactivity, we found that the nu3 mode excitation by one quantum is more reactive than the ground state by a factor of about 2, independently of the collision energy, and in agreement with the experimental measurement of 3.0 +/- 1.5. Fourth, the state-to-state angular distributions of the products reproduce the experimental behavior at 1.52 eV, where the CH3 products scatter sideways and backward. At 2.20 eV this experimental information is not available, and therefore the results reported here are again predictive. The satisfactory reproduction of a great variety of experimental data by the present QCT study lends confidence to the potential energy surface constructed by our group and to those results whose accuracy cannot be checked by comparison with experiment.  相似文献   

18.
Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this paper direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicals is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all pi-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C(6)H(5) + H --> C(6)H(6) exit channel of the C(3)H(3) + C(3)H(3) reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH(3) + H reference system. For the C(3)H(3) + C(3)H(3) reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C(6)H(5) + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C(3)H(3) + C(3)H(3) and C(3)H(5) + C(3)H(5) self-reactions compare favorably with the available experimental data. To our knowledge there are no experimental rate data for the C(3)H(3) + C(3)H(5) reaction.  相似文献   

19.
A dynamics study [cross section and microscopic mechanism versus collision energy (E(T))] of the reaction O+ + H2 --> OH+ + H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D2 and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E(T) = 0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E(T), and considering the influence of the collinear [OHH]+ absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies.  相似文献   

20.
High level ab initio calculations using complete active space self-consistent field and multi reference single and double excitation configuration interaction methods with cc-pVDZ (correlation consistent polarized valence double zeta) and cc-pVTZ (triple zeta) basis sets have been performed to elucidate the reaction mechanism of the ion-molecule reaction, C2H2(1Sigmag+) + O+(4S), for which collision experiment has been performed by Chiu et al. [J. Chem. Phys. 109, 5300 (1998)]. The minor low-energy process leading to the weak spin-forbidden product C2H2+ (2Piu) + O(1D) has been studied previously and will not be discussed here. The major pathways to form charge-transfer (CT) products, C2H2+ (2Piu) + O(3P) (CT1) and C2H2+ (4A2) + O(3P) (CT2), and the covalently bound intermediates are investigated. The approach of the oxygen atom cation to acetylene goes over an energy barrier TS1 of 29 kcal/mol (relative to the reactant) and adiabatically leads the CT2 product or a weakly bound intermediate Int1 between CT2 products. This transition state TS1 is caused by the avoided crossing between the reactant and CT2 electronic states. As the C-O distance becomes shorter beyond the above intermediate, the C1 reaction pathway is energetically more favorable than the Cs pathway and goes over the second transition state TS2 of a relative energy of 39 kcal/mol. Although this TS connects diabatically to the covalent intermediate Int2, there are many states that interact adiabatically with this diabatic state and these lead to the other charge-transfer product CT1 via either of several nonadiabatic transitions. These findings are consistent with the experiment, in which charge transfer and chemical reaction products are detected above 35 and 39 kcal/mol collision energies, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号