首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
An ab initio transition state theory based procedure for accurately predicting the combination kinetics of two alkyl radicals is described. This procedure employs direct evaluations of the orientation dependent interaction energies at the CASPT2/cc-pvdz level within variable reaction coordinate transition state theory (VRC-TST). One-dimensional corrections to these energies are obtained from CAS+1+2/aug-cc-pvtz calculations for CH3 + CH3 along its combination reaction path. Direct CAS+1+2/aug-cc-pvtz calculations demonstrate that, at least for the purpose of predicting the kinetics, the corrected CASPT2/cc-pvdz potential energy surface is an accurate approximation to the CAS+1+2/aug-cc-pvtz surface. Furthermore, direct trajectory simulations, performed at the B3LYP/6-31G* level, indicate that there is little local recrossing of the optimal VRC transition state dividing surface. The corrected CASPT2/cc-pvdz potential is employed in obtaining direct VRC-TST kinetic predictions for the self and cross combinations of methyl, ethyl, iso-propyl, and tert-butyl radicals. Comparisons with experiment suggest that the present dynamically corrected VRC-TST approach provides quantitatively accurate predictions for the capture rate. Each additional methyl substituent adjacent to a radical site is found to reduce the rate coefficient by about a factor of two. In each instance, the rate coefficients are predicted to decrease quite substantially with increasing temperature, with the more sterically hindered reactants having a more rapid decrease. The simple geometric mean rule, relating the capture rate for the cross reaction to those for the self-reactions, is in remarkably good agreement with the more detailed predictions. With suitable generalizations the present approach should be applicable to a wide array of radical-radical combination reactions.  相似文献   

2.
Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the (3)CH(2) + OH, (3)CH(2) + (3)CH(2), and (3)CH(2) + CH(3) barrierless association reactions. The predicted rate coefficient for the (3)CH(2) + OH reaction (approximately 1.2 x 10(-10) cm(3) molecule(-1) s(-1) for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the (3)CH(2) + CH(3) and (3)CH(2) + (3)CH(2) reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C(2)H(2) + 2H and C(2)H(2) + H2 products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH(3) and OH and for the CH(3) + OH reaction, are used to test the geometric mean rule for the CH(3), (3)CH(2), and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the (3)CH(2) + OH and (3)CH(2) + CH(3) reactions to better than 20%, with a larger (up to 50%) error for the CH(3) + OH reaction.  相似文献   

3.
Procedures for accurately predicting the kinetics of hydrogen atom associations with hydrocarbon radicals are described and applied to a series of reactions. The approach is based on CASPT2/cc-pvdz evaluations of the orientation-dependent interaction energies within variable reaction coordinate transition state theory. One-dimensional corrections to the interaction energies are estimated from CAS+1+2/aug-cc-pvtz evaluations for the H + CH3 reaction, and a dynamical correction factor of 0.9 is applied. This corrected CASPT2 approach yields results that are within 10% of those obtained with the full CAS+1+2/aug-cc-pvtz potential for the H + CH3, H + C2H5, H + C2H3, and H + C2H reactions. New predictions are made for the H + iso-C3H7, H + tert-C4H9, H + C6H5, and H + C10H7 reactions. For the H + CH3 and H + C2H3 reactions, where the experimental values appear to be the most well-determined, theory and experiment essentially agree to within their error bars. For the other reactions, the agreement is reasonably satisfactory given the often large dispersion in the experimental results. For the reactions with saturated alkyl radicals, the theory predicts that each additional CH3 group increases the steric factor by approximately a factor of 2. In contrast, for the unsaturated radicals, the H + C6H5 and H + C10H7 high-pressure association rate coefficients are nearly identical to that for H + C2H3.  相似文献   

4.
This study uses computational chemistry and statistical reaction rate theory to investigate the chemically activated reaction of diacetylene (butadiyne, C(4)H(2)) with the propargyl radical (C˙H(2)CCH) and the reaction of acetylene (C(2)H(2)) with the i-C(5)H(3) (CH(2)CCCC˙H) and n-C(5)H(3) (CHCC˙HCCH) radicals. A detailed G3SX-level C(7)H(5) energy surface demonstrates that the C(3)H(3) + C(4)H(2) and C(5)H(3) + C(2)H(2) addition reactions proceed with moderate barriers, on the order of 10 to 15 kcal mol(-1), and form activated open-chain C(7)H(5) species that can isomerize to the fulvenallenyl radical with the highest barrier still significantly below the entrance channel energy. Higher-energy pathways are available leading to other C(7)H(5) isomers and to a number of C(7)H(4) species + H. Rate constants in the large multiple-well (15) multiple-channel (30) chemically activated system are obtained from a stochastic solution of the one-dimensional master equation, with RRKM theory for microcanonical rate constants. The dominant products of the C(4)H(2) + C(3)H(3) reaction at combustion-relevant temperatures and pressures are i-C(5)H(3) + C(2)H(2) and CH(2)CCHCCCCH + H, along with several quenched C(7)H(5) intermediate species below 1500 K. The major products in the n-C(5)H(3) + C(2)H(2) reaction are i-C(5)H(3) + C(2)H(2) and a number of C(7)H(4) species + H, with C(7)H(5) radical stabilization at lower temperatures. The i-C(5)H(3) + C(2)H(2) reaction predominantly leads to C(7)H(4) + H and to stabilized C(7)H(5) products. The title reactions may play an important role in polycyclic aromatic hydrocarbon (PAH) formation in combustion systems. The C(7)H(5) potential energy surface developed here also provides insight into several other important reacting gas-phase systems relevant to combustion and astrochemistry, including C(2)H + the C(3)H(4) isomers propyne and allene, benzyne + CH, benzene + C((3)P), and C(7)H(5) radical decomposition, for which some preliminary analysis is presented.  相似文献   

5.
The reaction mechanism of C6H5 + C6H5NO involving four product channels on the doublet-state potential energy surface has been studied at the B3LYP/6-31+G(d, p) level of theory. The first reaction channel occurs by barrierless association forming (C6H5)2NO (biphenyl nitroxide), which can undergo isomerization and decomposition. The second channel takes place by substitution reaction producing C12H10 (biphenyl) and NO. The third and fourth channels involve direct hydrogen abstraction reactions producing C6H4NO + C6H6 and C6H5NOH + C6H4, respectively. Bimolecular rate constants of the above four product channels have been calculated in the temperature range 300-2000 K by the microcanonical Rice-Ramsperger-Kassel-Marcus theory and/or variational transition-state theory. The result shows the dominant reactions are channel 1 at lower temperatures (T < 800 K) and channel 3 at higher temperatures (T > 800 K). The total rate constant at 7 Torr He is predicted to be k(t) = 3.94 x 10(21) T(-3.09) exp(-699/T) for 300-500 K, 2.09 x 10(20) T(-3.56) exp(2315/T) for 500-1000 K, and 1.51 x 10(2) T(3.30) exp(-3043/T) for 1000-2000 K (in units of cm3 mol(-1) s(-1)), agreeing reasonably with the experimental data within their reported errors. The heats of formation of key products including biphenyl nitroxide, hydroxyl phenyl amino radical, and N-hydroxyl carbazole have been estimated.  相似文献   

6.
Electronic states of the C6H5F+ ion have been studied within C2v symmetry by using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with an atomic natural orbital basis. Vertical excitation energies (Tv) and relative energies (Tv') at the ground-state geometry of the C6H5F molecule were calculated for 12 states. For the five lowest-lying states, 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, geometries and vibrational frequencies were calculated at the CASSCF level, and adiabatic excitation energies (T0) and potential energy curves (PEC) for F-loss dissociations were calculated at the CASPT2//CASSCF level. On the basis of the CASPT2 T0 calculations, we assign the X, A, B, C, and D states of the ion to 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, respectively, which supports the suggested assignment of the B state to (2)(2)B1 by Anand et al. based on their experiments. Our CASPT2 Tv and Tv' calculations and our MRCI T0, Tv, and Tv' calculations all indicate that the 2(2)B1 state of C6H5F+ lies below 1(2)B2. By checking the relative energies of the asymptote products and checking the fragmental geometries and the charge and spin density populations in the asymptote products along the CASPT2//CASSCF PECs, we conclude that the 1(2)B1, 1(2)B2, and 1(2)A1 states of C6H5F+ correlate with C6H5+ (1(1)A1) + F (2P) (the first dissociation limit). The energy increases monotonically along the 1(2)B1 PEC, and there are barriers and minima along the 1(2)B2 and 1(2)A1 PECs. The predicted appearance potential value for C6H5+ (1(1)A1) is very close to the average of the experimental values. Our CASPT2//CASSCF PEC calculations have led to the conclusion that the 1(2)A2 state of C6H5F+ correlates with the third dissociation limit of C6H5+ (1(1)A2) + F (2P), and a preliminary discussion is presented.  相似文献   

7.
Procedures for accurately predicting the kinetics of H atom associations with resonance stabilized hydrocarbon radicals are described and applied to a series of reactions. The approach is based on direct CASPT2/cc-pvdz evaluations of the orientation dependent interaction energies within variable reaction coordinate transition state theory. One-dimensional corrections to the interaction energies are estimated from a CASPT2/aug-cc-pvdz minimum energy path (MEP) on the specific reaction of interest and a CASPT2/aug-cc-pvtz MEP for the H + CH3 reaction. A dynamical correction factor of 0.9 is also applied. For the H + propargyl, allyl, cyclopentadienyl, and benzyl reactions, where the experimental values appear to be quite well determined, theory and experiment agree to within their error bars. Predictions are also made for the combinations with triplet propargylene, CH2CCCH, CH3CCCH2, CH2CHCCH2, CH3CHCCH, cyclic-C4H5, CH2CCCCH, and CHCCHCCH.  相似文献   

8.
Ab initio CCSD(T)cc-pVTZ//B3LYP6-311G(**) and CCSD(T)/complete basis set (CBS) calculations of stationary points on the C(6)H(3) potential energy surface have been performed to investigate the reaction mechanism of C(2)H with diacetylene and C(4)H with acetylene. Totally, 25 different C(6)H(3) isomers and 40 transition states are located and all possible bimolecular decomposition products are also characterized. 1,2,3- and 1,2,4-tridehydrobenzene and H(2)CCCCCCH isomers are found to be the most stable thermodynamically residing 77.2, 75.1, and 75.7 kcal/mol lower in energy than C(2)H + C(4)H(2), respectively, at the CCSD(T)/CBS level of theory. The results show that the most favorable C(2)H + C(4)H(2) entrance channel is C(2)H addition to a terminal carbon of C(4)H(2) producing HCCCHCCCH, 70.2 kcal/mol below the reactants. This adduct loses a hydrogen atom from the nonterminal position to give the HCCCCCCH (triacetylene) product exothermic by 29.7 kcal/mol via an exit barrier of 5.3 kcal/mol. Based on Rice-Ramsperger-Kassel-Marcus calculations under single-collision conditions, triacetylene+H are concluded to be the only reaction products, with more than 98% of them formed directly from HCCCHCCCH. The C(2)H + C(4)H(2) reaction rate constants calculated by employing canonical variational transition state theory are found to be similar to those for the related C(2)H + C(2)H(2) reaction in the order of magnitude of 10(-10) cm(3) molecule(-1) s(-1) for T = 298-63 K, and to show a negative temperature dependence at low T. A general mechanism for the growth of polyyne chains involving C(2)H + H(C[triple bond]C)(n)H --> H(C[triple bond]C)(n+1)H + H reactions has been suggested based on a comparison of the reactions of ethynyl radical with acetylene and diacetylene. The C(4)H + C(2)H(2) reaction is also predicted to readily produce triacetylene + H via barrierless C(4)H addition to acetylene, followed by H elimination.  相似文献   

9.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with propargyl radicals (C3H3) has first been investigated in a crossed beam configuration. The radical reactants O(3P) and C3H3 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor propargyl bromide, respectively. A new exothermic channel of O(3P) + C3H3 --> C3H2 + OH was identified and the nascent distributions of the product OH in the ground vibrational state (X 2Pi:nu" = 0) showed bimodal rotational excitations composed of the low- and high-N" components without spin-orbit propensities. The averaged ratios of Pi(A')/Pi(A") were determined to be 0.60 +/- 0.28. With the aid of ab initio theory it is predicted that on the lowest doublet potential energy surface, the reaction proceeds via the addition complexes formed through the barrierless addition of O(3P) to C3H3. The common direct abstraction pathway through a collinear geometry does not occur due to the high entrance barrier in our low collision energy regime. In addition, the major reaction channel is calculated to be the formation of propynal (CHCCHO) + H, and the counterpart C3H2 of the probed OH product in the title reaction is cyclopropenylidene (1c-C3H2) after considering the factors of barrier height, reaction enthalpy and structural features of the intermediates formed along the reaction coordinate. On the basis of the statistical prior and rotational surprisal analyses, the ratio of population partitioning for the low- and high-N" is found to be about 1:2, and the reaction is described in terms of two competing addition-complex mechanisms: a major short-lived dynamic complex and a minor long-lived statistical complex. The observed unusual reaction mechanism stands in sharp contrast with the reaction of O(3P) with allyl radical (C3H5), a second significant conjugated hydrocarbon radical, which shows totally dynamic processes [J. Chem. Phys. 117, 2017 (2002)], and should be understood based upon the characteristic electronic structures and reactivity of the intermediates on the potential energy surface.  相似文献   

10.
The overall rate constant for the radical-radical reaction C2H5 + HO2 --> products has been determined at room temperature by means of time-resolved mass spectrometry using a laser photolysis/flow reactor combination. Excimer laser photolysis of gas mixtures containing ethane, hydrogen peroxide, and oxalyl chloride was employed to generate controlled concentrations of C2H5 and HO2 radicals by the fast H abstraction reactions of the primary radicals Cl and OH with C2H6 and H2O2, respectively. By careful adjustments of the radical precursor concentrations, the title reaction could be measured under almost pseudo-first-order conditions with the concentration of HO2 in large excess over that of C2H5. From detailed numerical simulations of the measured concentration-time profiles of C2H5 and HO2, the overall rate constant for the reaction was found to be k1(293 K) = (3.1 +/- 1.0) x 10(13) cm3 mol(-1) s(-1). C2H5O could be confirmed as a direct reaction product.  相似文献   

11.
The gas-phase radical-radical reaction dynamics of O(3P) + C3H5 --> H(2S) + C3H4O was studied at an average collision energy of 6.4 kcal/mol in a crossed beam configuration. The ground-state atomic oxygen [O(3P)] and allyl radicals (C3H5) were generated by the photolysis of NO2 and the supersonic flash pyrolysis of allyl iodide, respectively. Nascent hydrogen atom products were probed by the vacuum-ultraviolet-laser induced fluorescence spectroscopy in the Lyman-alpha region centered at 121.6 nm. With the aid of the CBS-QB3 level of ab initio theory, it has been found that the barrierless addition of O(3P) to C3H5 forms the energy-rich addition complexes on the lowest doublet potential energy surface, which are predicted to undergo a subsequent direct decomposition step leading to the reaction products H + C3H4O. The major counterpart C3H4O of the probed hydrogen atom is calculated to be acrolein after taking into account the factors of barrier height, reaction enthalpy, and the number of intermediates involved along the reaction pathway. The nascent H-atom Doppler profile analysis shows that the average center-of-mass translational energy of the H + C3H4O products and the fraction of the total available energy released as the translational energy were determined to be 3.83 kcal/mol and 0.054, respectively. On the basis of comparison with statistical calculations, the reaction proceeds through the formation of short-lived addition complexes rather than statistical, long-lived intermediates, and the polyatomic acrolein product is significantly internally excited at the moment of the decomposition.  相似文献   

12.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

13.
We present ab initio calculations of the reaction of ground-state atomic oxygen [O((3)P)] with a propargyl (C(3)H(3)) radical based on the application of the density-functional method and the complete basis-set model. It has been predicted that the barrierless addition of O((3)P) to C(3)H(3) on the lowest doublet potential-energy surface produces several energy-rich intermediates, which undergo subsequent isomerization and decomposition steps to generate various exothermic reaction products: C(2)H(3)+CO, C(3)H(2)O+H, C(3)H(2)+OH, C(2)H(2)+CHO, C(2)H(2)O+CH, C(2)HO+CH(2), and CH(2)O+C(2)H. The respective reaction pathways are examined extensively with the aid of statistical Rice-Ramsperger-Kassel-Marcus calculations, suggesting that the primary reaction channel is the formation of propynal (CHCCHO)+H. For the minor C(3)H(2)+OH channel, which has been reported in recent gas-phase crossed-beam experiments [H. Lee et al., J. Chem. Phys. 119, 9337 (2003); 120, 2215 (2004)], a comparison on the basis of prior statistical calculations is made with the nascent rotational state distributions of the OH products to elucidate the mechanistic and dynamic characteristics at the molecular level.  相似文献   

14.
Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5+C2H3-->1-butene, (2c) C2H5 + C2H5-->n-butane, and (3c) C2H3+C2H3-->1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [1-C4H8]/[C4H10] ratio was reduced from approximately 1.2 at 760 Torr (101 kPa) to approximately 0.5 at 100 Torr (13.3 kPa) and approximately 0.1 at pressures lower than about 5 Torr (approximately 0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3-->C3H5+CH3. This reaction occurs even at moderate pressures of approximately 200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(-3)-10(5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3+/-0.1.  相似文献   

15.
Full-dimensional, density functional theory (B3LYP/6-311g(d,p))-based potential energy surfaces (PESs) are reported and used in quasi-classical calculations of the reaction of C with C(2)H(2). For the triplet case, the PES spans the region of the reactants, the complex region (with numerous minima and saddle points) and the products, linear(l)-C(3)H+H, cyclic(c)-C(3)H+H and c-(3)C(3)+H(2). For the singlet case, the PES describes the complex region and products l-C(3)H+H, c-C(3)H+H and l-(1)C(3)+H(2). The PESs are invariant under permutation of like nuclei and are fit to tens of thousands of electronic energies. Energies and harmonic frequencies of the PESs agree well the DFT ones for all stationary points and for the reactant and the products. Dynamics calculations on the triplet PES find both l-C(3)H and c-C(3)H products, with l-C(3)H being dominant at the energies considered. Limited unimolecular reaction dynamics on the singlet PES find both products in comparable amounts as well as the C(3)+H(2) product.  相似文献   

16.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

17.
This paper examines the unimolecular dissociation of propargyl (HCCCH2) radicals over a range of internal energies to probe the CH+HCCH and C+C2H3 bimolecular reactions from the radical intermediate to products. The propargyl radical was produced by 157 nm photolysis of propargyl chloride in crossed laser-molecular beam scattering experiments. The H-loss and H2 elimination channels of the nascent propargyl radicals were observed. Detection of stable propargyl radicals gave an experimental determination of 71.5 (+5-10) kcal/mol as the lowest barrier to dissociation of the radical. This barrier is significantly lower than predictions for the lowest barrier to the radical's dissociation and also lower than calculated overall reaction enthalpies. Products from both H2+HCCC and H+C3H2 channels were detected at energies lower than what has been theoretically predicted. An HCl elimination channel and a minor C-H fission channel were also observed in the photolysis of propargyl chloride.  相似文献   

18.
Although a number of hydrocarbon radicals including the heavier C(3)-radicals C(3)H(3) and C(3)H(5) have been experimentally shown to deplete NO effectively, no theoretical or experimental attempts have been made on the reactivity of the simplest C(3)-radical towards NO. In this article, we report our detailed mechanistic study on the C(3)H+NO reaction at the Gussian-3//B3LYP/6-31G(d) level by constructing the singlet and triplet electronic state [H,C(3),N,O] potential energy surfaces (PESs). The l-C(3)H+NO reaction is shown to barrierlessly form the entrance isomer HCCCNO followed by the direct O-elimination leading to HCCCN+(3)O on triplet PES, or by successive O-transfer, N-insertion, and CN bond-rupture to generate the product (1)HCCN+CO on singlet PES. The possible singlet-triplet intersystem crossings are also discussed. Thus, the novel reaction l-C(3)H+NO can proceed effectively even at low temperatures and is expected to play an important role in both combustion and interstellar processes. For the c-C(3)H+NO reaction, the initially formed H-cCCC-NO can most favorably isomerize to HCCCNO, and further evolution follows that of the l-C(3)H+NO reaction. Quantitatively, the c-C(3)H+NO reaction can take place barrierlessly on singlet PES, yet it faces a small barrier 2.7 kcal/mol on triplet PES. The results will enrich our understanding of the chemistry of the simplest C(3)-radical in both combustion and interstellar processes, which to date have received little attention despite their importance and available abundant studies on its structural and spectroscopic properties.  相似文献   

19.
The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.22 at 850 K to 0.97 at 500 K. The third energetically accessible channel producing C(6)H(4) + HONO was found to be uncompetitive throughout the temperature range investigated, 500-2000 K. The predicted rate constants for C(6)H(5)NO(2) --> C(6)H(5) + NO(2) and C(6)H(5)O + NO --> C(6)H(5)ONO under varying experimental conditions were found to be in good agreement with all existing experimental data. For C(6)H(5) + NO(2), the combination processes producing C(6)H(5)ONO and C(6)H(5)NO(2) are dominant at low temperature and high pressure, while the disproportionation process giving C(6)H(5)O + NO via C(6)H(5)ONO becomes competitive at low pressure and dominant at temperatures above 1000 K.  相似文献   

20.
Tunneling chemical reactions between deuterated methyl radicals and the hydrogen molecule in a parahydrogen crystal have been studied by Fourier transform infrared spectroscopy. The tunneling rates of the reactions R + H2 --> RH + H (R = CD3,CD2H,CDH2) in the vibrational ground state were determined directly from the temporal change in the intensity of the rovibrational absorption bands of the reactants and products in each reaction in solid parahydrogen observed at 5 K. The tunneling rate of each reaction was found to differ definitely depending upon the degree of deuteration in the methyl radicals. The tunneling rates were determined to be 3.3 x 10(-6) s(-1), 2.0 x 10(-6) s(-1), and 1.0 x 10(-6) s(-1) for the systems of CD3, CD2H, and CDH2, respectively. Conversely, the tunneling reaction between a CH3 radical and the hydrogen molecule did not proceed within a week's time. The upper limit of the tunneling rate of the reaction of the CH3 radical was estimated to be 8 x 10(-8) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号