首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord.  相似文献   

2.
Quantum correlation dynamics between two identical and spatially separated atoms in free space is investigated by the use of concurrence C and quantum discord (QD). The behaviors of QD differs in many unexpected ways from the entanglement in this system. Firstly, it shows the situations which the concurrence and QD can behave very differently with a “sudden birth” phenomenon of the former but not of the latter, and QD is only oscillating decays with time and the interqubit distance. We also verify the cases which QD is always greater than the concurrence and the region where the concurrence is vanished but with nonzero values for QD. Meanwhile an unexpected situation which the concurrence is greater than QD under the initial state |eg〉 is analyzed. It is revealed that the quantum correlation based only on QD is expected to be more robust than entanglement which is not suitable for all the initial states under the decoherence environment. Then, by introducing the incoherent pumping, we also study the different properties of the steady-state entanglement and QD about this atomic subsystem. It is shown that the incoherent pumping can overcome the decay of the atoms and the influences about the interqubit distance r 12/λ on the steady-state correlation can make the decay of the concurrence obviously quicker than QD, the life of the steady-state QD is evidently larger than the steady-state entanglement.  相似文献   

3.
The dynamics of two non-coupled qubits independently interacting with their reservoirs is solved by the time convolutionless projection operator method. We study two-qubit quantum correlation dynamics for two different types of spectral densities, which are a Lorentzian distribution and an Ohmic spectral density with a Lorentzian-Drude cutoff function. For two qubits initially prepared in the initial Bell state, quantum discord can keep longer time and reach larger values in nonMarkovian reservoirs for the first spectral distribution or by reducing the cutoff frequency for the second case. For the initial Bell-like state, the dynamic behaviors of quantum discord and entanglement are compared. The results show that a long time of quantum correlation can be obtained by adjusting some parameters in experiment and further confirm that the discord can capture quantum correlation in addition to entanglement.  相似文献   

4.
Experimental approach to characterize the non-locality, entanglement, and quantum correlation of a multiparity quantum system is one of the important subjects in quantum information theory. Here, by investigating the violations of Bell inequality (BI), we analyze the relations among the non-locality, concurrence C, and quantum discord Q typically for a family of Bell-diagonal states. It is shown that, for the optimal measurement basis the BI is always violated, if the quantum discord is larger than 0.5031 and the concurrence is larger than 0.5605. Certainly, the BI is maximally violated for the maximal entanglement and quantum discord, i.e., C=Q=1. Our generic results are demonstrated with a thermal XY model of the two-qubit system with controllable interbit couplings.  相似文献   

5.
丁邦福  王小云  赵鹤平 《中国物理 B》2011,20(10):100302-100302
We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.  相似文献   

6.
In this paper, we study the dynamics of quantum discord and entanglement of three identical two-level atoms simultaneously resonantly interacting with three spatially separate single-mode of high-Q cavities respectively. Taking advantage of the depiction quantum discord and entanglement of formation (EoF), we conclude that the discord and entanglement of atoms and cavities can be mediated by changing some parameters and the maximum values of discord and entanglement are independent on the couplings of cavities and atoms. In particular, there also exists quantum discord sudden death as well as entanglement sudden death and the time interval of the former is shorter than that of the later in the proposed quantum system. It is shown that the discord and entanglement of any two atoms among three atoms can be transferred to the corresponding cavities, and there exists discord and entanglement exchanging between the atoms and the corresponding cavities.  相似文献   

7.
We study the dynamics of quantum discord between two qubits coupled collectively to a thermal reservoir. For comparison, we also consider the dynamics of quantum entanglement. It is shown that we can obtain a stable quantum discord induced by the thermal environment when the discord of the initial state is zero. The thermal environment can also induce a stable amplification of the initially prepared quantum discord for certain X-type states. It is very valuable that the quantum discord is more resistant against the thermal environment than quantum entanglement. And, we have demonstrated that the sudden death of discord in a Markovian regime is impossible even at high temperature. It provides us a feasible way to create and protect quantum correlation in the case of a high-temperature thermal environment for various physical system such as trapped ions, quantum dots or Josephson junctions.  相似文献   

8.
We study the dynamics of multipartite quantum correlations measured by the lower bound of concurrence and quantum discord in a three-qubit system coupled to an XY spin chain. For the initial pure GHZ and W state, we find the lower bound of entanglement is more robust than the quantum discord against the decoherence induced by the spin environment. But for the Werner state, the sudden death of discord is not observed even in the presence of entanglement sudden death. By comparing the evolutions for the GHZ and W states, we show that the W state preserves more quantum correlations than the GHZ state. In addition, we put research emphasis on the relation between the dynamics of multipartite quantum correlations and the quantum phase transition of the spin environment.  相似文献   

9.
Protection of entanglement from disturbance of the environment is an essential task in quantum information processing. We investigate the effect of the weak measurement and reversal (WMR) on the protection of the entanglement for an arbitrarily entangled two-qubit pure state from these three typical quantum noisy channels, i.e., amplitude damping channel, phase damping channel and depolarizing quantum channel. Given the parameters of the Bell-like initial qubits’ state |ψ〉 = a|00〉 + d|11〉, it is found that the WMR operation indeed helps for protecting distributed entanglement from the above three noisy quantum channels. But for the Bell-like initial qubits’ state |?〉 = b|01〉 + c|10〉, the WMR operation only protects entanglement in the amplitude damping channel, not for the phase damping and depolarizing quantum channels. In addition, we discuss how the concurrence and the success probability behave with adjusting the weak or the reversal weak measurement strength.  相似文献   

10.
We study the dynamics of quantum correlations involving entanglement and discord of two pairs of two-level atoms in cavity QED. In the model, two atoms A and C are coupled with a single-mode cavity field via Tavis-Cumming interaction at one location, and the same for B and D at another location. The two locations are connected by the entanglement of the atoms AB and CD while there are no any direct interactions between them. Through comparing the robustness of entanglement and discord of the atoms in various initial conditions of cavities, it is shown the discord is more robust than the entanglement and would be useful in quantum information technology.  相似文献   

11.
We have studied the analytical Markovian and non-Markovian dynamics of quantum correlations, such as entanglement, quantum discord and Bell nonlocalities for three noisy qubits. Quantum correlation as measured by quantum discord is found to be immune to death contrary to entanglement and Bell nonlocality for initial GHZ- or W-type mixed states.  相似文献   

12.
We investigate the dynamic evolution behaviors of entanglement and geometric quantum discord (GQD) of hybrid qubits in a circuit QED system. Under certain initial conditions, interactions between qubits and that between the qubit and the cavity can suppress the decay of entanglement and GQD of qubits. Under the initial condition |ψ Q (0)〉 I =sinα|↓↑〉+cosα|↑↓〉, such decay was avoided by increasing the coupling strength ratio between qubits and that between the qubit and the cavity. Under the aforementioned condition, the survival time of entanglement and GQD was prolonged by decreasing the coupling strength ratio between qubits and that between the qubit and the cavity.  相似文献   

13.
A deterministic secure quantum communication against collective-dephasing noise is proposed. Alice constructs two sets of three-photon bases with EPR (Einstein-Podolsky-Rosen) pairs in the state |Ψ+〉 or |Ψ-〉 and auxiliary single photons in the state |H〉. And then she sends them to Bob. Bob can get the secret message by his single-photon measurement outcomes and two public message strings from Alice if the quantum channel is secure. The scheme does not need photon storing technique and only single-photon measurement is necessary.  相似文献   

14.
The dynamics of entanglement and quantum discord(QD) between two two-level atoms interacting with two dissipative coupled cavities in the presence of initial atom-cavity correlations is investigated. In comparison with the result of the initial factorized state, we show that the initial state contained quantum correlation of atom-cavity is most robust against the dissipative environment, and the initial atom-cavity correlations, especially the quantum correlation, play a constructive role in the generation of atomic entanglement and QD.Simultaneously, the comparison between Markovian and non-Markovian dynamics, and the influences of inter-cavity hopping rate are also taken into account and analyzed.  相似文献   

15.
Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state |iof the chain is swapped into the state |N-i within a time evolution interval τ.Such a phenomenon is an interesting way of transfering entanglement.An expressions for the perfect mirroring of a single qubit contained in a spin chain were proposed in the past.We exploit such an expressions for calculating the evolution times in chains of both two and three spins.In the case of a chain of two qubits,we derive conditions under which the associated four Bell states diagonalize the Hamiltonian.It is found that for the two Bell states |Φ+and|Φ-,perfect mirroring does not occur(i.e.entanglement is not preserved under swapping).On the other hand,perfect single qubit mirror effect(entanglement preservation) indeed occurs for the other two Bell states |Ψ+and|Ψ- which are mapped into |Φ+and|Φ-respectively.For the case of a chain of three qubits,the effects of a perfect single qubit mirroring on a set of four maximally entangled three qubit states ψ1,ψ2,χ1,and χ2 are studied.Due to the fact that quantum mirroring preserves maximal entanglement,the states ψ1 and ψ2 are not altered.However,quantum mirroring changes the states χ1 and χ2 only if we apply perfect quantum state mirroring in the site a=1 of the three qubits spin chain.The above constrains the preservation of maximal entanglement under qubit mirroring of such a state.Due to the fact that swapping has already been experimentally tested,a posible experimental implementations of single qubit mirroring is possible.  相似文献   

16.
By starting from the stochastic Hamiltonian of the three correlated spins and modeling their frequency fluctuations as caused by dephasing noisy environments described by Ornstein-Uhlenbeck (OU) processes, we study the dynamics of quantum correlations, including entanglement and quantum discord. Of course, in this article, we use two definitions for the quantum discord (global quantum discord and quantum dissension). We prepared initially our open system with the Greenberger-Horne-Zeilinger (GHZ) and W states and present the exact solutions for evolution dynamics of entanglement and quantum discord between three spins under both Markovian and non-Markovian regime of this classical noise. By comparison the dynamics of entanglement with that of quantum discord we find that entanglement can be more robust than quantum discord against this noise. It is shown that by considering non-Markovian extensions the survival time of correlations prolong. Also, we compare the results of two definitions of the quantum discord and show that the quantum dissension is equal to the global quantum discord for GHZ state, but they are unequal for the W state.  相似文献   

17.
程景  单传家  刘继兵  黄燕霞  刘堂昆 《物理学报》2018,67(11):110301-110301
采用几何量子失协的计算方法,通过改变两原子初始状态、腔内光子数和偶极-偶极相互作用强度,研究了Tavis-Cummings模型中的几何量子失协特性.结果表明:几何量子失协都是随时间周期性振荡的,选取适当的初态可以使两原子一直保持失协状态,增加腔内光子数和偶极相互作用对几何量子失协有积极的影响.  相似文献   

18.
王小云  丁邦福  赵鹤平 《中国物理 B》2013,22(2):20309-020309
Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density.For three atoms initially prepared in Greenberger-Horne-Zeilinger-type state,quantum correlation dynamics in a Markovian reservoir is compared with that in a nonMarkovian reservoir.By increasing detuning quantity in the non-Markovian reservoir,three-atom correlation dynamics measured by negative eigenvalue presents a trapping phenomenon which provides long-time quantum entanglement.Then we compare the correlation dynamics of three atoms with that of two atoms,measured by quantum entanglement and quantum discord for an initial robuster-entangled type state.The result further confirms that quantum discord is indeed different from quantum entanglement in identifying quantum correlation of many bodies.  相似文献   

19.
In this paper the entanglement and the quantum discord (QD) dynamics of two cavities interacting with a common independent reservoir are investigated. Remarkably, it has been proved that the entanglement between two cavities can be transferred to one of the cavities and the reservoir with time evolution. Compared with the dynamics of entanglement, the QD has the similar behavior. It is found that the cavity damping rate can stabilize the entanglement and quantum discord between the cavity and reservoir. We also explore the monogamy of the entanglement and the QD during the interaction of quantum system.  相似文献   

20.
We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation.We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state,and also their relationship with quantum discord.The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord,but the attenuation of quantum discord is obviously slower than the concurrence’s,correspondingly the survival time of quantum discord is longer.Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state.The higher the degree of entanglement,the more robust the quantum discord is than concurrence.And the reverse is equally true.Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition,so does the concurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号