首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A frequency modulation (FM) method was developed to measure electron paramagnetic resonance (EPR) absorption. The first-derivative spectrum of 1,1-diphenyl-2-picrylhydrazyl (DPPH) powder was measured with this FM method. Frequency modulation of up to 1.6 MHz (peak-to-peak) was achieved at a microwave carrier frequency of 1.1 GHz. This corresponds to a magnetic field modulation of 57microT (peak-to-peak) at 40.3 mT. By using a tunable microwave resonator and automatic control systems, we achieved a practical continuous-wave (CW) EPR spectrometer that incorporates the FM method. In the present experiments, the EPR signal intensity was proportional to the magnitude of frequency modulation. The background signal at the modulation frequency (1 kHz) for EPR detection was also proportional to the magnitude of frequency modulation. An automatic matching control (AMC) system reduced the amplitude of noise in microwave detection and improved the baseline stability. Distortion of the spectral lineshape was seen when the spectrometer settings were not appropriate, e.g., with a lack of the open-loop gain in automatic tuning control (ATC). FM is an alternative to field modulation when the side-effect of field modulation is detrimental for EPR detection. The present spectroscopic technique based on the FM scheme is useful for measuring the first derivative with respect to the microwave frequency in investigations of electron-spin-related phenomena.  相似文献   

2.
The automatic frequency control (AFC) circuit in conventional electron paramagnetic resonance (EPR) spectrometers automatically tunes the microwave source to the resonance frequency of the resonator. The circuit works satisfactorily for samples stable enough that the geometric relations in the resonance structure do not change in a significant way. When EPR signals are measured during in vivo experiments with small rodents, however, the distance between the signal source and the surface-coil detector can change rapidly. When a conventional AFC circuit keeps the oscillator tuned to the resonator under those conditions, the resultant frequency change may exceed +/-5 MHz and markedly shift the position of the EPR signal. Such a shift results in unacceptable effects on the spectra, especially when the experimenter is dealing with narrow EPR lines. The animal movement also causes a mismatching of the resonator and the 50-ohm transmission line. Direct results of this mismatching are increased noise; shifts in the position of the baseline; and a high probability of overdriving the signal preamplifier with consequent loss of the EPR signal. We therefore designed, built, and tested a new surface-coil resonator using varactor diodes for tuning the resonance frequency to the fixed frequency oscillator and for capacitive matching of the resonator to the 50-ohm transmission line. The performance of the automatic matching system was tested in vivo by measuring EPR spectra of lithium phthalocyanine implanted in rats. Stability and sensitivity of the spectrometer were evaluated by measuring EPR spectra with and without the use of the automatic matching system. The overall experimental performance of the spectrometer was found to significantly improve during in vivo experiments using the automatic matching system. Excellent matching between the 50-ohm transmission line and the resonator was maintained under all experimental circumstances that were tested. This should allow us now to carry out experiments that previously were not possible.  相似文献   

3.
A computer-controlled X-band time domain electron paramagnetic resonance (EPR) spectrometer, with a time resolution of the order of 0.5μsec, has been constructed with many of the crucial microwave components designed and fabricated by the Microwave Engineering Group of TIFR. The spectrometer operates either in a microwave power pulsed mode for determination of spin-lattice relaxation times by the saturation recovery technique or in the kinetic mode for determination of the time dependence of EPR signal after laser excitation. It has an automatic frequency control, an automatic phase control and, most importantly, a field-frequency lock which ensures good stability of the EPR line positions enabling signal averaging for extended periods. The constructional details of the spectrometer and its performance in both the modes are described here by reporting results on certain typical systems.  相似文献   

4.
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented.  相似文献   

5.
A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration.  相似文献   

6.
Continuous-wave EPR spectroscopy using a frequency modulation (FM) scheme was developed. An electronically tunable resonator and an automatic tuning control (ATC) system were used. Using the FM scheme instead of magnetic field modulation, we detected EPR absorption at the first derivative mode. We used a microwave frequency of 1.1 GHz in the present experiment. Similar signal-to-noise ratios were obtained with conventional field modulation and the FM method, and a low-quality factor EPR resonator was not necessary to suppress the significant microwave reflection from the resonator. The FM method with a tunable resonator may be an alternative solution to achieving phase-sensitive detection, when the side-effects of magnetic field modulation, such as microphonic noise and mechanical vibration, are detrimental for EPR detection.  相似文献   

7.
The anomalous dependence of the electron paramagnetic resonance (EPR) line shape on the microwave power in the resonator has been found when studying the continuous-wave EPR spectra of impurity holmium ions in synthetic forsterite on an ELEXSYS E 580 EPR spectrometer. The power-threshold transition from the conventional lines being the derivatives of the spectral line contours to the spectral line contours themselves has been observed as the power increased. The properties of the anomalous EPR lines are qualitatively explained assuming that the resonance electric quadrupole transitions take place between the electron spin levels.  相似文献   

8.
The performance of two electron paramagnetic resonance (EPR) spectrometers/imagers, one configured in pulsed mode and the other in continuous wave (CW) mode, at an operating frequency of 300 MHz is compared. Using the same resonator (except for altered Q-factors), identical samples and filling factors in the two techniques have been evaluated for their potentials and limitations for in vivo spectroscopic and imaging applications. The assessment is based on metrics such as sensitivity, spatial and temporal resolution, field of view, image artifacts, viable spin probes, and subjects of study. The spectrometer dead time limits the pulsed technique to samples with long phase memories (>275 ns). Nevertheless, for viable narrow-line spin probes, the pulsed technique offers better sensitivity and temporal resolution. The CW technique, on the other hand, does not restrict the choice at spin probes. In addition, the phase-sensitive narrow-band detection of the CW technique gives artifact-free images even for large objects. Selected examples illustrating the performance of the CW and pulsed techniques are presented to put the capabilities of the two techniques in perspective.  相似文献   

9.
We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ~60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the resonator are presented.  相似文献   

10.
A dielectric material distorts the microwave field inside an EPR resonator, which results in distortion of the EPR signal from spins inside the material. In this paper, the effects of a spherical bulb filled with a dielectric liquid such as water or a water–ethanol mixture were examined. EPR spectra were recorded for small samples inside and outside of the sphere. The studies include CW and ESE experiments at two microwave frequencies, X band (9.2 GHz) and L band (1.03 GHz). The double integral (area) of an EPR signal depends on[formula]at the position of the sample, causing a large difference in EPR signal intensities between samples in regions of different dielectrics. The phase of the EPR signal also is affected by the presence of the dielectric. These results were compared with three methods of calculating electromagnetic fields (quasi-static method, plane-wave-superposition method, and numerical analysis). Good agreement was found between experimental and calculated results.  相似文献   

11.
An electron paramagnetic resonance (EPR) setup for line narrowing experiments with fast sample spinning at variable angles between the rotation axis and the static magnetic field is described and applied in the magic-angle sample spinning (MAS) EPR experiment at X-band frequencies (9.5 GHz). Sample spinning speeds up to 17 kHz at temperatures down to 200 K can be achieved with rotors of 4-mm outer and 2.5-mm inner diameter without severe losses in microwave amplitude compared to standard pulse EPR probeheads. A phase cycle is introduced that provides pure absorption MAS EPR spectra and allows one to distinguish between positive and negative frequency offsets (pseudo-quadrature detection). Possible broadening mechanisms in MAS EPR spectra are discussed. It is demonstrated both by theory and by experiment that the MAS EPR experiment requires excitation bandwidths that are comparable to the total spectral width, since otherwise destructive interference between contributions of spins with similar resonance offsets suppresses the signal. Experimental observations on the E(1) center in gamma-irradiated silica glass and on the SO(-)(3) radical in gamma-irradiated sulfamic acid are reported.  相似文献   

12.
A 750-MHz electronically tunable resonator was investigated in terms of the sensitivity of electron paramagnetic resonance (EPR) signal detection. The conversion efficiency of the radio-frequency magnetic field was calculated for resonators with 50- and 100-Ω coaxial coupling lines using three-dimensional (3D) microwave field and microwave circuit simulators. Based on the simulation results, two tunable resonators were physically constructed and compared in terms of EPR signal sensitivity using a nitroxyl radical solution. While the resonator with 100-Ω coaxial lines provided 14% greater signal intensity, its signal-to-noise ratio was lower than that of the resonator with 50-Ω lines. To demonstrate the capability of the constructed tunable resonator for EPR imaging experiments, a solution of nitroxyl radical and the leg of a tumor-bearing mouse were visualized.  相似文献   

13.
Electron spin-echo experiments generally require microwave power levels of hundreds of watts to produce the 5–10 G of RF field to generate 90° and 180° pulses in 10 ns. A low-power (i.e., less than I W) EPR spectrometer using a loop-gap resonator can generate the full range of time-domain experiments on samples with submicrosecond recovery times; 90° pulses are generated in 40 ns, and relaxation times as short as 22 ns are measured. Appropriate time-domain experiments were performed to independently measure the spinspin relaxation time, phase memory time, and spin-lattice relaxation time; the results were compared with CW saturation. It was found that the spin-spin and spin-lattice relaxation rates do differ by about 5%. The entire CW signal of PADS is reconstructed from a pulse experiment at a single field position. Small differences in linewidths among the three lines were seen in accordance with theory.  相似文献   

14.
A wideband tunable optoelectronic oscillator (OEO) based on a dispersion compensated phase modulated microwave photonics filter (MPF) is proposed and experimentally demonstrated. The MPF, consisting of a tunable laser source (TLS), a phase modulator, a fiber Bragg grating Fabry–Perot filter and a photodetector, is used as the oscillating mode selection device. Dual-loop configuration is employed to make sure the OEO operates at a single oscillating mode. Theoretically analysis is carried out to demonstrate the tuning range limitation due to the phase-modulation to intensity-modulation conversion caused by long single mode fiber (SMF). To overcome this disadvantage and expand the signal tuning range, a dispersion compensation fiber is introduced followed by the SMF to compensate the fiber dispersion. By simply adjusting the wavelength of the TLS, an ultra-wideband tunable microwave signal with the frequency tuning range from 2 to 44 GHz is obtained. The phase noise is also investigated and measured to be less than ? 110 dBc/Hz at an offset of 10 kHz within the whole frequency range.  相似文献   

15.
Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.  相似文献   

16.
The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine the electrostatic potential on the surface of a protein.  相似文献   

17.
An open-type electron paramagnetic resonance (EPR) spectrometer to measure a sample located outside a resonator was fabricated. As the resonator, the field modulation coils, and the main magnet were integrated on the resonator side in the sensor head, the space for a sample was opened. Thus, a large sample could be placed at the end of the resonator without much limitation on the size. For an application of this apparatus, various coal masses were placed on the resonator of the sensor head and EPR measurements were performed nondestructively. It was found that the EPR signal intensity of coals showed a good correlation with the carbon-to-hydrogen ratio, one of the parameters for classifying coal.  相似文献   

18.
We report a difference in the spectral lineshapes of continuous-wave (CW) electron paramagnetic resonance (EPR) spectroscopy between field and frequency modulation. This finding addresses the long-standing question of the effect of modulation in EPR absorption. We compared the first-derivative EPR spectra at 1.1 GHz for lithium phthalocyanine crystals, which have a single narrow linewidth in the EPR absorption spectrum, using field and frequency modulation. The experimental findings suggest that unpaired electrons have different behaviors under perturbation due to field and frequency modulation.  相似文献   

19.
The replacement of the commonly used analog phase-sensitive detection (PSD) by digital PSD for demodulation of electron paramagnetic resonance (EPR) signals is suggested for upgrading of an out-of-date EPR spectrometer. Connection of the microwave bridge output to a fast analog-digital converter (ADC) eliminates some of the spectrometer’s components: the electronics responsible for analog PSD, ADC for sampling of demodulated signals, and a computer, as well as the usage of some of the spectrometer’s settings. The spectrometer is reduced to a magnet, microwave bridge, and personal computer containing an ADC board. EPR signals digitized for a set of magnetic field positions form a two-dimensional array which is stored in a personal computer. Demodulation and filtering are done numerically to produce a conventional EPR spectrum. In comparison with analog PSD, this numerical approach does not eliminate the out-of-phase component of the signal and the signals at the higher harmonics of the modulation frequency. The details of modernizing the Bruker ER200E SRC EPR spectrometer are discussed to demonstrate these and other advantages of digital demodulation.  相似文献   

20.
A modified rectangular loop-gap resonator for X-band electron paramagnetic resonance (EPR) studies of aqueous samples, enabling the light access, is described. Changes introduced into rectangular resonator geometry, previously presented in Piasecki et al. (1998) [1], and redesigned coupling structure lead to the better thermal and mechanical stability. The modified structure makes provision for the controlled light access to the sample placed in a flat cell during an EPR experiment. The sensitivity of the resonator for aqueous samples as well as an experimentally tested microwave magnetic field homogeneity are presented. Results of simulations and experimental tests indicate that the presence of light access holes in the resonator's front side does not disturb the uniformity of microwave magnetic field distribution in the nodal plane. The optimal flat cell thickness for unsaturable and saturable aqueous samples has been calculated for this new structure. A modified rectangular geometry of the loop-gap resonator ensures a good performance for aqueous samples allowing its convenient and efficient light illumination during EPR signal recording .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号