首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A frequency modulation (FM) method was developed to measure electron paramagnetic resonance (EPR) absorption. The first-derivative spectrum of 1,1-diphenyl-2-picrylhydrazyl (DPPH) powder was measured with this FM method. Frequency modulation of up to 1.6 MHz (peak-to-peak) was achieved at a microwave carrier frequency of 1.1 GHz. This corresponds to a magnetic field modulation of 57microT (peak-to-peak) at 40.3 mT. By using a tunable microwave resonator and automatic control systems, we achieved a practical continuous-wave (CW) EPR spectrometer that incorporates the FM method. In the present experiments, the EPR signal intensity was proportional to the magnitude of frequency modulation. The background signal at the modulation frequency (1 kHz) for EPR detection was also proportional to the magnitude of frequency modulation. An automatic matching control (AMC) system reduced the amplitude of noise in microwave detection and improved the baseline stability. Distortion of the spectral lineshape was seen when the spectrometer settings were not appropriate, e.g., with a lack of the open-loop gain in automatic tuning control (ATC). FM is an alternative to field modulation when the side-effect of field modulation is detrimental for EPR detection. The present spectroscopic technique based on the FM scheme is useful for measuring the first derivative with respect to the microwave frequency in investigations of electron-spin-related phenomena.  相似文献   

2.
Continuous-wave EPR spectroscopy using a frequency modulation (FM) scheme was developed. An electronically tunable resonator and an automatic tuning control (ATC) system were used. Using the FM scheme instead of magnetic field modulation, we detected EPR absorption at the first derivative mode. We used a microwave frequency of 1.1 GHz in the present experiment. Similar signal-to-noise ratios were obtained with conventional field modulation and the FM method, and a low-quality factor EPR resonator was not necessary to suppress the significant microwave reflection from the resonator. The FM method with a tunable resonator may be an alternative solution to achieving phase-sensitive detection, when the side-effects of magnetic field modulation, such as microphonic noise and mechanical vibration, are detrimental for EPR detection.  相似文献   

3.
Spin-lattice relaxation times (T?s) of small water-soluble spin-labels in the aqueous phase as well as lipid-type spin-labels in membranes increase when the microwave frequency increases from 2 to 35 GHz (Hyde, et al., J. Phys. Chem. B 108 (2004) 9524-9529). The T?s measured at W-band (94 GHz) for the water-soluble spin-labels CTPO and TEMPONE (Froncisz, et al., J. Magn. Reson. 193 (2008) 297-304) are, however, shorter than when measured at Q-band (35 GHz). In this paper, the decreasing trends at W-band have been confirmed for commonly used lipid-type spin-labels in model membranes. It is concluded that the longest values of T? will generally be found at Q-band, noting that long values are advantageous for measurement of bimolecular collisions with oxygen. The contribution of dissolved molecular oxygen to the relaxation rate was found to be independent of microwave frequency up to 94 GHz for lipid-type spin-labels in membranes. This contribution is expressed in terms of the oxygen transport parameter W=T??1(Air)-T??1(N?), which is a function of both concentration and translational diffusion of oxygen in the local environment of a spin-label. The new capabilities in measurement of the oxygen transport parameter using saturation-recovery (SR) EPR at Q- and W-band have been demonstrated in saturated (DMPC) and unsaturated (POPC) lipid bilayer membranes with the use of stearic acid (n-SASL) and phosphatidylcholine (n-PC) spin-labels, and compared with results obtained earlier at X-band. SR EPR spin-label oximetry at Q- and W-band has the potential to be a powerful tool for studying samples of small volume, ~30 nL. These benefits, together with other factors such as a higher resonator efficiency parameter and a new technique for canceling free induction decay signals, are discussed.  相似文献   

4.
A versatile high-power pulse Q-band EPR spectrometer operating at 34.5--35.5 GHz and in a temperature range of 4--300 K is described. The spectrometer allows one to perform one- and two-dimensional multifrequency pulse EPR and pulse ENDOR experiments, as well as continuous wave experiments. It is equipped with two microwave sources and four microwave channels to generate pulse sequences with different amplitudes, phases, and carrier frequencies. A microwave pulse power of up to 100 W is available. Two channels form radiofrequency pulses with adjustable phases for ENDOR experiments. The spectrometer performance is demonstrated by single crystal pulse ENDOR experiments on a copper complex. A HYSCORE experiment demonstrates that the advantages of high-field EPR and correlation spectroscopy can be combined and exploited at Q-band. Furthermore, we illustrate how this combination can be used in cases where the HYSCORE experiment is no longer effective at 35 GHz because of the shallow modulation depth. Even in cases where the echo modulation is virtually absent in the HYSCORE experiment at Q-band, matched microwave pulses allow one to get HYSCORE spectra with a signal-to-noise ratio as good as at X-band. Finally, it is shown that the high microwave power, the short pulses, and the broad resonator bandwidth make the spectrometer well suited to Fourier transform EPR experiments.  相似文献   

5.
We report the development of the frequency-modulation (FM) method for measuring electron spin resonance (ESR) absorption in the 210- to 420GHz frequency range. We demonstrate that using a high-frequency ESR spectrometer without resonating microwave components enables us to overcome technical difficulties associated with the FM method due to nonlinear microwave-elements, without sacrificing spectrometer performance. FM was achieved by modulating the reference oscillator of a 13GHz Phase-Locked Dielectric Resonator Oscillator, and amplifying and frequency-multiplying the resulting millimeter-wave radiation up to 210, 315 and 420GHz. ESR spectra were obtained in reflection mode by a lock-in detection at the fundamental modulation frequency, and also at the second and third harmonic. Sensitivity of the setup was verified by conduction electron spin resonance measurement in KC60.  相似文献   

6.
We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ~60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the resonator are presented.  相似文献   

7.
The Mark II W-band (94 GHz) EPR spectrometer with a low-noise millimeter-wave amplifier is described. The microwave bridge is of a high-sensitivity homodyne design. Signal-to-noise ratios were measured for a number of detectors with and without the low-noise amplifier. The signal-to-noise ratio was determined not only by the type of detector but also how well it was matched. Without a microwave preamplifier, a hot-electron bolometer provides the best signal-to-noise ratio. Addition of a low-noise microwave preamplifier to the CW homodyne bridge gives a 10 dB improvement in the noise figure of the receiver at a modulation frequency of 100 kHz. A greater improvement in the signal-to-noise ratio is seen at low modulation frequencies (1–10 kHz), making the low-noise amplifier useful for systems with large linewidths. This allows larger modulation amplitudes to be used without causing significant cavity heating or microphonics. The W-band spectrometer is capable of rapid sweeps from 0 to 7 T, as well as narrower (0.1 T) high-resolution sweeps. It is suitable for a wide variety of samples including liquids and samples cooled to sub-liquid-helium temperatures.  相似文献   

8.
Spin-label W-band (94 GHz) electron paramagnetic resonance (EPR) with a five-loop–four-gap resonator (LGR) was successfully applied to study membrane properties (Mainali et al. J Magn Reson 226:35–44, 2013). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop–six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.  相似文献   

9.
Stochastic excitation with a full-width-half-maximum bandwidth of 250 MHz was used to perform Fourier-transform (FT) high-field/high-frequency electron paramagnetic resonance (EPR) at 3.4T/95 GHz (W-band). Thereby, the required microwave peak power is reduced by a factor of tau(p)/T1 as compared to equivalent pulsed FT EPR in which the spin system with spin-lattice relaxation time T1 is excited by a single microwave pulse of length tau(p). Stochastic EPR is particularly interesting under high-field/high-frequency conditions, because the limited output power of mm microwave sources, amplifiers, and mixers makes pulse FT EPR in that frequency domain impossible, at least for the near future. On the other hand, FT spectroscopy offers several advantages compared to field-swept magnetic resonance methods, as is demonstrated by its success in NMR and X-band EPR. In this paper we describe a novel stochastic W-band microwave bridge including a bimodal induction mode transmission resonator that serves for decoupling the microwave excitation and signal detection. We report first EPR measurements and discuss experimental difficulties as well as achieved sensitivity. Moreover, we discuss future improvements and the possibility for an application of stochastic W-band FT EPR to transient signals such as those of photoexcited radical pairs in photosynthetic reaction centers.  相似文献   

10.
Petroleum of Arabian and Colombian origin was studied by electron paramagnetic resonance (EPR) spectroscopy at X- (9 GHz), Q- (34 GHz) and W-bands (94 GHz). The experiments were performed at room temperature (about 300 K) and at 77 K (W-band only). The asymmetry in the lines corresponding to free radicals was observed more intensely in the W-band spectra. The values of the line width ΔH in the spectra increased linearly with the microwave frequency utilized in the EPR experiments. A mathematical simulation of the free radical signal for the EPR spectra in three bands with a set of parameters corresponding to a single species was attempted, but this was not exactly coincident with the experimental signals, suggesting that the hyperfine interaction of the unpaired electron with its neighborhood corresponds to more than one species of radical in the molecular structure of the petroleum asphaltene.  相似文献   

11.
We report on a subterahertz superlattice parametric oscillator that operated simultaneously at two different harmonic frequencies of a microwave pump field. A pump field (frequency near 100 GHz) was coupled to a GaAs/AlAs superlattice in a resonator for the third and the fifth harmonic. The pump field produced a third harmonic field and this together with the pump field created a fifth harmonic field. A theoretical analysis indicates that the nonlinearity, which is based on the dynamics of miniband electrons, should allow for the upconversion of pump radiation of higher frequency into the terahertz frequency range.   相似文献   

12.
Coarse control and fine control of the resonant frequency of a loop-gap resonator (LGR) operating at an electron paramagnetic resonance (EPR) frequency of ca. 650 MHz were achieved using a single-turn coil with a varactor diode attached (a frequency shift coil). When the distance between the LGR and the frequency shift coil was changed from 15 to 10 mm under the condition of constant voltage to the varactor diode (0 V), a shift of the resonant frequency of the LGR of ca. 20 MHz was observed (coarse frequency control). When the voltage applied to the varactor diode was changed from 0 to 15 V at the same distance between the LGR and the frequency shift coil (10 mm), a shift of the resonant frequency of the LGR of ca. 200 kHz was observed (fine frequency control). There were no significant changes in sensitivity of EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) without and with the frequency shift coil. The EPR sensitivity did not change discernibly when the resonant frequency was shifted by the frequency shift coil. Furthermore, radio-frequency phase adjustment for homodyne detection could be performed by using the frequency shift coil without applying frequency modulation to the carrier wave.  相似文献   

13.
We present a dual-mode resonator operating at/near 94 GHz (W-band) microwave frequencies and supporting two microwave modes with the same field polarization at the sample position. Numerical analysis shows that the frequencies of both modes as well as their frequency separation can be tuned in a broad range up to GHz. The resonator was constructed to perform pulsed ELDOR experiments with a variable separation of "pump" and "detection" frequencies up to Δν=350 MHz. To examine its performance, test ESE/PELDOR experiments were performed on a representative biradical system.  相似文献   

14.
This paper develops methodology for computer simulation of the effect on an experimental EPR spectrum that would occur if an additional field modulation were applied followed by eventual phase sensitive detection at the modulation frequency or at one its harmonics. The algorithm, which is called pseudomodulation, transforms the digitized spectrum and also filters the noise. If a second harmonic spectrum is desired in order to make subtle changes in curvature more apparent, it is shown that it is always preferable to obtain an experimental second harmonic spectrum. The signals are identical, but because of the filtering properties of the pseudomodulation algorithm, the noise is lower. Pseudomodulation should be applied to simulated spectra prior to fitting a model to data in order more precisely to simulate the experimental signal. It is argued that such fits ought to involve not only first harmonics but also higher harmonics, since the various harmonics are sensitive in different ways to input parameters in the spin Hamiltonian. Application of pseudomodulation to the EPR spectrum of the blue copper-protein azurin is described.  相似文献   

15.
Direct detection of free induction decays and electron spin echoes, and the recording of echo-detected EPR spectra and electron spin echo envelope modulation patterns at a microwave frequency of 2.5 GHz is demonstrated. This corresponds to the measurement of the transverse magnetization in the laboratory frame, rather than in the rotating frame as usually done by down-converting the signal (homodyne detection). An oscilloscope with a 6-GHz analog bandwidth, a sampling rate of 20 GigaSamples per second, and a trigger frequency of 5 GHz for the edge trigger and 750 MHz for the advanced trigger, is used in these experiments. For signal averaging a 3-GHz microwave clock divider has been developed to synchronize the oscilloscope with the frequency of the EPR signal. Moreover, direct detection of continuous wave EPR signals at 2.5 GHz is described.  相似文献   

16.
For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16-gap resonator with inner diameter of 42 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal-induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B(1) field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz.  相似文献   

17.
Electron paramagnetic resonance (EPR) single-crystal rotation studies at very high frequency (249.9 GHz) of transition metal ions with electron spins greater than one-half are reported. At 249.9 GHz, the spectra are in the high-field limit despite large zero-field splittings. This leads to a considerable simplification of the spectra, and aids in their interpretation. Single-crystal 249.9 GHz EPR spectra of Ni2+ in Ni2CdCl6· 12H2O, Mn2+ (0.2%) in ZnV2O7, and Fe3+ (2%) in CaYA104 were recorded at 253 K in an external magnetic field of up to 9.2 T, along with those at X-band and Q-band frequencies at 295 K and lower temperatures. The goniometer used at 249.9 GHz for single-crystal rotation is based on a quasi-optical design and is an integral part of a special Fabry-Pérot resonator. The values of the spin-Hamiltonian parameters were estimated from a simultaneous fitting of all of the observed line positions at several microwave frequencies recorded at various orientations of each crystal with respect to the external magnetic field with least-squares fitting in conjunction with matrix diagonalization. Estimates of zero-field splitting parameterD at room temperature are: for Ni2+, about ?31 GHz (site I) and about ?7 GHz (site II); for Mn2+, about 6 GHz; and for Fe3+, about 29 GHz.  相似文献   

18.
Existing Q-band (35 GHz) EPR spectrometers employ cylindrical cavities for more intense microwave magnetic fields B1, but are so constructed that only one orientation between the external field B and B1is allowed, namely the B B1orientation, thus limiting the use of the spectrometer to measurements on Kramers spin systems (odd electron systems). We have designed and built a Q-band microwave probe to detect EPR signals in even electron systems, which operates in the range 2 K ≤ T ≤ 300 K for studies of metalloprotein samples. The cylindrical microwave cavity operates in the TE011mode with cylindrical wall coupling to the waveguide, thus allowing all orientations of the external magnetic field B relative to the microwave field B1. Such orientations allow observation of EPR transitions in non-Kramers ions (even electron) which are either forbidden or significantly weaker for B B1. Rotation of the external magnetic field also permits easy differentiation between spin systems from even and odd electron oxidation states. The cavity consists of a metallic helix and thin metallic end walls mounted on epoxy supports, which allows efficient penetration of the modulation field. The first quantitative EPR measurements from a metalloprotein (Hemerythrin) at 35 GHz with B1 B are presented.  相似文献   

19.
The Bloch equation containing a Zeeman modulation field is solved analytically by treating the Zeeman modulation frequency as a perturbation. The absorption and dispersion signals at both 0 degrees and 90 degrees modulation phase are obtained. The solutions are valid to first order in the modulation frequency, but are otherwise valid for any value of modulation amplitude or microwave amplitude. A first order treatment of modulation frequency is shown to be a valid approximation over a wide range of typical experimental EPR conditions. The solutions derived from the Bloch equation suggest that the effect of over-modulation on first and second harmonic EPR spectra can be formulated as a mathematical filter that smoothes and broadens the under-modulated signal. The only adjustable filter parameter is a width that is equivalent to the applied peak-to-peak modulation amplitude. The true spin-spin and spin-lattice relaxation rates are completely determined from the under-modulated spectrum. The filters derived from the analytic solutions of the Bloch equation in the linear limit of modulation frequency are tested against numerical solutions of the Bloch equation that are valid for any modulation frequency to show their applicability. The filters are further tested using experimental EPR spectra. Experimental under-modulated spectra are mathematically filtered and compared with the experimental over-modulated spectra. The application of modulation filters to STEPR spectra is explored and limitations are discussed.  相似文献   

20.
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号