首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
One‐pot synthesis of thermoresponsive magnetic composite microspheres with a poly(N‐isopropylacrylamide) (PNIPAM) shell and a Fe3O4 core is demonstrated. Temperature sensitivity of PNIPAM was adopted to design the novel synthesis pathway. The as‐prepared composite microspheres have an obvious core‐shell structure with a mean size of approximately 250 nm. The Fe3O4 core is approximately 5 nm and the thickness of the PNIPAM shell is approximately 10 nm. The content of Fe3O4 in the composite microspheres can be controlled by this method. The composite microspheres experience a swelling and shrinking process in water by adjusting the temperature below and above the lower critical solution temperature (LCST) around 32 °C. These microspheres also show fine response to an external magnetic field. This work presents a platform to synthesize organic/inorganic composite microspheres in a facile and efficient approach. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2702–2708  相似文献   

2.
A hetero‐arm star polymer, polystyrene‐poly(N‐isopropylacrylamide)‐ poly(2‐(dimethylamino)ethylmethacrylate) (PSt‐PNIPAM‐PDMAEMA), was synthesized by “clicking” the alkyne group at the junction of PSt‐b‐PNIPAM diblock copolymer onto the azide end‐group of PDMAEMA homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. PSt‐PNIPAM‐PDMAEMA micelles with PSt block as core and PNIPAM and PDMAEMA blocks as shell were formed when adding the copolymer solution in THF into 10 folds of water. Lower critical solution temperature (LCST) of PNIPAM and PDMAEMA homopolymer is 32 °C for PNIPAM and 40 to 50 °C for PDMAEMA, respectively. Upon continuous heating through their LCSTs, PSt‐PNIPAM‐PDMAEMA core‐shell micelles exhibited two‐stage thermally induced collapse. The first‐stage collapse, from 20 to 34 °C, is ascribed to the shrinkage of PNIPAM chains; and the second‐stage collapse, from 38 to 50 °C, is due to the shrinkage of PDMAEMA chains. Dynamic light scattering was used to confirm the double phase transitions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 786–796, 2009  相似文献   

3.
The addition of mixture of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and polystyrene homopolymer (h‐PS) in tetrahydrofuran dropwise into water leads to nanoparticles with a PS core and a thermally sensitive PNIPAM shell. The effects of the ratio of the homopolymer to copolymer and temperature on the formation and stabilization of the dispersion were investigated by using a combination of static and dynamic laser light scattering. PNIPAM shell continuously collapses as temperature increases in the range 20–40 °C. Such formed particles are stable even at temperatures much higher than lower critical solution temperature (LCST ~ 32 °C) of PNIPAM. Our results reveal that the area occupied per hydrophilic PNIPAM chain on the hydrophobic PS core remains nearly a constant regardless of the amount of h‐PS in the polymer mixture. This clearly indicates that the surface area occupied per hydrophilic group is a critical parameter for stabilizing particles dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 749–755, 2010  相似文献   

4.
The lower critical solution temperatures (LCSTs) for mass fractionated samples of poly(N‐isopropylacrylamide) (PNIPAM) were studied to determine the effect of polymer molecular weight on the LCST using a high throughput temperature gradient apparatus. PNIPAM fractions prepared by a conventional radical polymerization using azoisobutyronitrile (AIBN) as the initiator had LCSTs that were largely invariant with molecular weight or dispersity. Only slight deviations were noted with lower molecular weight samples. An 18‐kDa sample had a 0.6 °C higher LCST. A 56‐kDa sample had a 0.2 °C higher LCST. PNIPAM derivatives prepared with a triphenylmethyl (trityl) functionalized azo initiator were also prepared and mass fractionated. These samples' LCSTs were identical to those of PNIPAM samples prepared using AIBN initiation when higher molecular weight samples were compared. The trityl‐containing PNIPAM fractions' LCSTs varied when the molecular weight decreased below 100 kDa. Acidolysis of the trityl end groups provided a third set of PNIPAM derivatives whose LCST differed only with samples with Mw values < 60 kDa. These results show there is no effect of molecular weight on LCST until the degree of polymerization is such that end group structure becomes significant. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1492–1501, 2006  相似文献   

5.
We report a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) brush functionalized Janus Au–Pt bimetallic micromotor capable of modulating the direction of motion with the change of the ambient temperature. The PNIPAM@Au–Pt micromotor moved along the Au–Pt direction with a speed of 8.5 μm s?1 in 1.5 % H2O2 at 25 °C (below the lower critical solution temperature (LCST) of PNIPAM), whereas it changed the direction of motion (i.e., along the Pt–Au direction) and the speed decreased to 2.3 μm s?1 at 35 °C (above LCST). Below LCST, PNIPAM brushes grafted on the Au side were hydrophilic and swelled, which permitted the electron transfer and proton diffusion on the Au side, and thus the motion is regarded as a self‐electrophoretic mechanism. However, PNIPAM brushes above LCST became hydrophobic and collapsed, and thus the driving mechanism switched to the self‐diffusiophoresis like that of Pt‐modified Janus silica motors. These motors could reversibly change the direction of motion with the transition of the hydrophobic and hydrophilic states of the grafted PNIPAM brushes. Such a thermoresponsive polymer brush functionalization method provides a new strategy for engineering the kinematic behavior of phoretically driven micro/nanomotors.  相似文献   

6.
The interfacial properties of end-grafted temperature-responsive poly(N-isopropylacryamide) (PNIPAM) were quantified by direct force measurements both above and below the lower critical solution temperature (LCST) of 32 degrees C. The forces were measured between identical, opposing PNIPAM films and between a PNIPAM film and a lipid membrane. At the grafting densities and molecular weights investigated, the polymer extension did not change significantly above the LCST, and the polymers did not adhere. Below the LCST, the force-distance profiles suggest a vertical phase separation, which results in a diluter outer layer and a dense surface proximal layer. At large separations, the force profiles agree qualitatively with simple polymer theory but deviate at small separations. Importantly, at these low grafting densities and molecular weights, the end-grafted PNIPAM does not collapse above the LCST. This finding has direct implications for triggering liposomal drug release with end-grafted PNIPAM, but it increases the temperature range where these short PNIPAM chains function as steric stabilizers.  相似文献   

7.
N–Isopropylacrylamide (NIPAM) was polymerized using 1‐pyrenyl 2‐chloropropionate (PyCP) as the initiator and CuCl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as the catalyst system. The polymerizations were performed using the feed ratio of [NIPAM]0/[PyCP]0/[CuCl]0/[Me6TREN]0 = 50/1/1/1 in DMF/water of 13/2 at 20 °C to afford an end‐functionalized poly(N‐isopropylacrylamide) with the pyrenyl group (Py–PNIPAM). The characterization of the Py–PNIPAM using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry provided the number–average molecular weight (Mn,MS). The lower critical solution temperature (LCST) for the liquid–solid phase transition was 21.7, 24.8, 26.5, and 29.3 °C for the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000, respectively; hence, the LCST was dramatically lowered with the decreasing Mn,MS. The aqueous Py–PNIPAM solution below the LCST was characterized using a static laser light scattering (SLS) measurement to determine its molar mass, Mw,SLS. The aqueous solutions of the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000 showed the Mw,SLS of 586,000, 386,000, 223,000, and 170,000, respectively. Thus, lowering the LCST for Py–PNIPAM should be attributable to the formation of the PNIPAM aggregates. The LCST of 21.7 °C for Py–PNIPAM with the Mn,MS of 3000 was effectively raised by adding β‐cyclodextrin (β‐CD) and reached the constant value of ~26 °C above the molar ratio of [β‐CD]/[Py–PNIPAM] = 2/1, suggesting that β‐CD formed an inclusion complex with pyrene in the chain‐end to disturb the formation of PNIPAM aggregates, thus raising the LCST. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1117–1124, 2006  相似文献   

8.
孙培健  王佛松 《高分子科学》2015,33(11):1598-1605
Microspheres with thermo-responsible surface were fabricated by PCL-b-PEO-b-PNIPAM triblock copolymers. Thermo-responsible morphological changes of PCL-b-PEO-b-PNIPAM microspheres immersed in aqueous solution at temperatures above the LCST (e.g. 37 °C) were observed from porous surface structure to compact surface layer. Enzymatic degradation and in vitro drug release results showed that the thermo-responsible surface layer greatly influenced the degradation of microspheres as well as the drug release behavior from microspheres. With the copolymerization of PNIPAM block into PCL-b-PEO copolymers, the drug release could be well regulated by changing temperatures and microspheres composition, which revealed the great potentials of microspheres with thermo-responsible surface for controlled drug release.  相似文献   

9.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

10.
In this communication, a novel one-pot synthetic strategy for preparing hollow PNIPAM microspheres via an interfacial polymerization approach at the interface of an inverse W/O emulsion has been proposed and demonstrated. The results show that the prepared PNIPAM microspheres have real empty core and polymer shell structure, with a size range of 1-3 mum. The hollow microspheres experienced a reversible swelling and deswelling process by mediating the temperature below and above the lower critical solution temperature (LCST) of the PNIPAM. The new approach not only provided a unique technical pathway to prepare hollow PNIPAM microspheres in situ under mild reaction conditions but also opened a platform for helping to understand the mechanism of diffusion, migration of the PNIPAM at an oil/water interface above its LCST, and the polymer layer formation mechanism as well.  相似文献   

11.
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A Janus silica cage was synthesized by selectively grafting an ionic liquid (IL) and poly‐N‐isopropylacrylamide (PNIPAM) (lower critical solution temperature (LCST)≈32 °C) onto the exterior and interior sides of the mesoporous SiO2 shell. The paramagnetic core inside the cavity is responsible for magnetic collection. The PW12O403? anion is further conjugated onto the IL side by anion exchange. The Janus cage acts as a thermal‐responsive reactor for catalytic oxidization of dibenzothiophene (DBT) in the presence of H2O2. The sulfide in the model oil can be completely decomposed at 25 °C, whilst the oxidative products are more dissoluble in water and preferentially captured inside the Janus cage. The Janus cage reactor could be regenerated at high temperature above 32 °C after releasing the products.  相似文献   

13.
Summary: A series of thermally responsive dendritic core-shell polymers were prepared based upon dendritic polyamidoamine (PAMAM), modified with carboxyl end-capped linear poly(N-isopropylacrylamide) (PNIPAAm-COOH) in different ratios via an esterification process to obtain PNIPAAm-g-PAMAM. The graft ratio of PNIPAAm could be adjusted by changing the feed ratio of PAMAM-OH to PNIPAAm-COOH and was verified by 1H NMR and gel penetration chromatography (GPC). The lower critical solution temperature (LCST) of PNIPAAm-g-PAMAM evaluated by UV-vis spectrophotometer was about 32 °C. Indomethacin (IMC) as a model drug was loaded in the thermosensitive polymer-grafted dendrimer derivative and its release behavior was studied below and above its LCST (27 °C vs 37 °C). Results showed that the LCST of PNIPAAm-g-PAMAM was around 32 °C compared with that of the pure PNIPAAm. The release behavior of the indomethacin entrapped in the internal cavities of the PNIPAAm-g-PAMAM showed that almost 77% of the drug was cumulatively released at 27 °C after 10 hours, whereas only 20% was released at 37 °C. The release rate of IMC from the IMC/PNIPAAm-g-PAMAM complex at 37 °C is significantly slower than that at 27 °C, which indicates that the PNIPAAm chains grafted on the surface of PAMAM dendrimer could act as a channel switching on-off button through expending or contracting in response to the temperature variation and could control the drug release by varying the surrounding temperature.  相似文献   

14.
PNIPAM chain collapse depends on the molecular weight and grafting density   总被引:1,自引:0,他引:1  
This study demonstrates that the thermally induced collapse of end-grafted poly(N-isopropylacrylamide) (PNIPAM) above the lower critical solution temperature (LCST) of 32 degrees C depends on the chain grafting density and molecular weight. The polymer was grafted from the surface of a self-assembled monolayer containing the initiator (BrC(CH3)2COO(CH2)11S)2, using surface-initiated atom transfer radical polymerization. Varying the reaction time and monomer concentration controlled the molecular weight, and diluting the initiator in the monolayer altered the grafting density. Surface force measurements of the polymer films showed that the chain collapse above the LCST decreases with decreasing grafting density and molecular weight. At T > LCST, the advancing water contact angle increases sharply on PNIPAM films of high molecular weight and grafting density, but the change is less pronounced with films of low-molecular-weight chains at lower densities. Below the LCST, the force-distance profiles exhibit nonideal polymer behavior and suggest that the brush architecture comprises dilute outer chains and much denser chains adjacent to the surface.  相似文献   

15.
Precipitation polymerization of N-isopropylacrylamide (NIPAM) with methylenebisacrylamide (MBAAm) in water at 70°C gave thermosensitive hydrogel microspheres. The adsorbability of proteins on the poly-NIPAM microspheres was found to depend on temperature. Below the lower critical solution temperature (LCST) of poly-NIPAM in an aqueous medium, that is, around 32°C, the microspheres hold a large amount of water inside and their surface is hydrophilic enough to suppress the adsorption of proteins. On the contrary, above 32°C, the micropheres deswell and their surface becomes hydrophobic and, consequently, susceptible to adsorption of a large amount of proteins. Proteins once adsorbed on the microspheres at a high temperature could be desorbed more or less by lowering the temperature to below 32°C. The extent of desorption at low temperatures was found to depend on the incubation time for adsorption at high temperatures.  相似文献   

16.
Hollow molecular imprinted polymer microspheres were prepared by distillation precipitation polymerization with (S)‐(+)‐ibuprofen (S‐IBF) as template molecule and acrylamide (AM) as functional monomer. Using the silicon dioxide (SiO2, 180 nm) modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) as the template microspheres, the molecular imprinted shells were coated on successfully (SiO2@MIPs). The thermosensitive SiO2@MIPs‐PNIPAM core‐shell microspheres were subsequently prepared by grafting the PNIPAM chains (Mn=1.21×104 g/mol, polydispersity index=1.30), which were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization, on the surface of SiO2@MIPs microspheres via the thiol‐ene click chemistry. The grafting density of PNIPAM brushes on the SiO2@MIPs microspheres was about 0.18 chains/nm2. After HF etching, the hollow imprinted microspheres were finally obtained. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles were measured by DSL at 25°C and 45°C respectively, and the sizes of the microspheres changed by about 35 nm. The modified microspheres presented excellent controlled release property to S‐IBF, moreover about half amount of the adsorptions passed into acetonitrile‐water solution through the specific holes of imprinted shell at 25°C under vibration.  相似文献   

17.
Microspheres with thermo-responsible surface were fabricated by PCL-b-PEO-b-PNIPAM triblock copolymers. Thermo-responsible morphological changes of PCL-b-PEO-b-PNIPAM microspheres immersed in aqueous solution at temperatures above the LCST(e.g. 37 ?C) were observed from porous surface structure to compact surface layer. Enzymatic degradation and in vitro drug release results showed that the thermo-responsible surface layer greatly influenced the degradation of microspheres as well as the drug release behavior from microspheres. With the copolymerization of PNIPAM block into PCL-b-PEO copolymers, the drug release could be well regulated by changing temperatures and microspheres composition, which revealed the great potentials of microspheres with thermo-responsible surface for controlled drug release.  相似文献   

18.
Herein we demonstrate a fully abiotic smart single‐nanopore device that rectifies ionic current in response to the temperature. The temperature‐responsive nanopore ionic rectifier can be switched between a rectifying state below 34 °C and a non‐rectifying state above 38 °C actuated by the phase transition of the poly(N‐isopropylacrylamide) [PNIPAM] brushes. On the rectifying state, the rectifying efficiency can be enhanced by the dehydration of the attached PNIPAM brushes below the LCST. When the PNIPAM brushes have sufficiently collapsed, the nanopore switches to the non‐rectifying state. The concept of the temperature‐responsive current rectification in chemically‐modified nanopores paves a new way for controlling the preferential direction of the ion transport in nanofluidics by modulating the temperature, which has the potential to build novel nanomachines with smart fluidic communication functions for future lab‐on‐chip devices.  相似文献   

19.
Poly(N-isopropyl-acrylamide) (PNIPAM) is a paradigm thermally sensitive polymer, which has a lower critical solution temperature (LCST) of ~32 °C in water. Herein by AFM-based single molecule force spectroscopy (SMFS), we measured the single chain elasticity of PNIPAM across the LCST in water. Below LCST, the force curves obtained at different temperatures have no remarkable difference; while above LCST, an unexpected temperature dependent elasticity is observed, mainly in the middle force regime. We found that 35 °C is a turning point of the variation: from 31 to 35 °C, the middle parts of the force curves drop gradually, whereas from 35 to 40 °C, the middle parts rise gradually. A possible mechanism for the unexpected temperature dependent mechanics is proposed. The single chain contraction against external force upon heating from 35 to 40 °C may cast new light on the design of molecular devices that convert thermal energy to mechanical work.  相似文献   

20.
In this paper, we report the synthesis and characterization of a new stimuli-responsive diblock polymer, i.e., methoxy poly (ethylene glycol)-block-Poly(N-isopropylacrylamide) (mPEG-b-PNIPAM), which belongs to the family of supramolecular amphiphiles. For this purpose, β-cyclodextrin (β-CD)-functionalized methoxy poly (ethylene glycol) (mPEG-CD) and adamantine (AD)-modified poly(N-isopropylacrylamide) (PNIPAM-AD) were synthesized. The diblock polymer mPEG-b-PNIPAM was then obtained by host–guest inclusion between mPEG-CD and PNIPAM-AD. The structure and molecular weight of the mPEG-b-PNIPAM was confirmed by 1HNMR and GPC, respectively. Above the lower critical solution temperature (LCST), mPEG-b-PNIPAM can self-assemble into nano-structures in aqueous solutions with PNIPAM block as the core and mPEG block as the corona. The aggregation behavior of mPEG-b-PNIPAM were revealed by UV-vis, DLS measurements, and TEM observations. The mPEG-b-PNIPAM was further utilized to construct Dox@mPEG-b-PNIPAM micelles at 37°C in phosphate-buffered saline (PBS). No detectable amount of Dox was released from the micelles at 37°C. When cooling to 27°C or adding a competitive reagent, however, release of Dox from the micelles was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号