首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
考虑碳粒表面还原反应的移动火焰锋面(MFF)模型   总被引:7,自引:4,他引:3  
在原始移动火焰锋面(MFF)模型的基础上,提出一种考虑碳粒表面还原反应的改进MFF模型。该模型给出了包括表面还原反应和 CO容积反应在内的碳粒燃烧反应速率的显式表达式,便于分析和讨论各种工况下碳粒的燃烧状态和影响因素。与原始的 MFF模型和单膜模型相比,所计算的颗粒温度和燃烧速率更符合严格的连续膜模型的预报结果,而计算时间只为连续膜模型的数十万分之一。研究结果表明,改进的 MFF模型是一种简单可行、适于工程应用的碳粒燃烧理论模型。  相似文献   

2.
利用OH-PLIF技术,研究了甲烷空气预混射流火焰,在不同出口雷诺数下,不同氮气稀释比例下火焰OH自由基的二维分布以及火焰的前锋面结构特性,以此实现对柔和燃烧的基础特性研究。实验结果显示,在获得大量氮气稀释后,预混火焰的OH浓度峰值减少了30%以上,并且整个燃烧反应明显延迟,但火焰面面密度没有发生明显变化。同时发现,改变出口雷诺数对火焰OH浓度影响较小,但是增加出口雷诺数可以扩大燃烧反应区。  相似文献   

3.
移动火焰锋面(MFF)模型的理论对比与实验验证   总被引:1,自引:1,他引:0  
本文根据碳粒非均相着火,有无颗粒温度跃变现象,来判断CO的均相着火,阐述了MFF模型中颗粒边界层CO着火燃烧假设的理论意义。通过实验与理论对比,证明了小于100μm的碳粒有可能发生CO着火。MFF模型预报与连续膜模型,以及实验点都有好的符合。利用MFF模型推导出三种极限情况的燃烧模式,揭示了MFF模型与连续膜模型的理论关联。从理论与实验对比中,进一步地验证了MFF模型。  相似文献   

4.
本文使用"CO相对燃烧速率"的概念和通用的"有效影响参数转化方程",将带有气相反应速率无穷快假设的移动火焰锋面(MFF)模型成功地扩展应用到有限气相反应速率条件的计算中。对于多组不同有限气相反应速率、以及不同粒径的碳粒燃烧计算,MFF模型扩展应用的预报结果都与严格连续膜模型符合较好,碳粒着火温度的预报也更为准确。  相似文献   

5.
考虑热解的扩展连续膜模型,可以详细预报煤粉挥发分析出、焦碳燃烧的全过程.模型以CH4燃烧的反应动力学特性,近似地描述了挥发分火焰.提出新的简化模拟方法均相着火后挥发分燃烧的移动火焰锋面(MFFVC)模型,弥补了挥发分现有计算方法中未考虑颗粒边界层内挥发分均相着火及燃烧的不足.与挥发分现有计算方法、扩散控制的挥发分燃烧(DLVC)模型相比, MFFVC模型预报与考虑热解的扩展连续膜模型符合较好.  相似文献   

6.
通过二维双温模型研究过滤燃烧火焰锋面倾斜的演化规律。给定初始倾斜角度(8°),甲烷/空气在当量比为0.2~0.5,流速为0.4~1.2 m/s的范围内,研究倾斜火焰锋面的演变。结果表明,在流速较大时,火焰锋面演化类似于S形的火焰;在流速较小时,火焰锋面演化为特征火焰。分析表明,形成以上火焰的原因是由于初始倾斜火焰在燃烧器中径向不同位置的传播速度不同。数值计算捕捉到了倾斜火焰发展的基本形态。  相似文献   

7.
用OH-PLIF研究浮力对预混V形火焰的作用   总被引:1,自引:0,他引:1  
在火焰和流动相互作用中,浮力是火焰影响流场的因素致一。研究浮力的作用有助于深入了解湍流燃烧的机理。本文利用甲烷-空气预混V形火焰研究浮力的作用。分析表明浮力不仅影响火焰的平均位置,还可能影响火焰的皱折。在1go和μg下用OH-PLIF观测火焰,发现层流和湍流火焰呈现相反的浮力效应,这表明浮力确实影响火焰的皱折。另外,层流火焰锋面在μg下明显折皱,这意味着微重力也适于研究火焰中其他诱发流动的机制。  相似文献   

8.
应用RNG K-ε湍流模型和EBU-Arrhenius燃烧速率模型,模拟了湍流预混V形火焰的起燃过程。数值模拟首先得出了圆柱形稳定杆后的卡门涡街,并进一步给出了火焰锋面在传播中的特征。在火焰点燃的初期,火焰的形状受到稳定杆尾流的卡门涡街的很大影响。随着火焰向前传播,涡街渐渐消失。火焰锋面的传播过程与差分干涉方法得到的实验测量值吻合较好。  相似文献   

9.
本文提出了一种新的考虑了颗粒边界层内CO气相反应效应的碳颗粒燃烧简化模型——移动火焰锋面(MFF)模型。该模型成功地实现了在“碳颗粒着火时表面等效生成物为CO_2”与“扩散扩制时全部成为CO”这两个极限之间的各种中间燃烧工况的连续转变,并很好地预报了Young等人测量得到的褐煤碳颗粒表面温度超过现有单膜模型理论极限值的实验结果。  相似文献   

10.
碳烟主要是烃类燃料不完全燃烧生成的产物,其对人类健康、空气质量以及燃烧装置的使用寿命都会产生有害影响。碳烟生成是一个复杂的物理化学过程,控制碳烟排放,需要克服碳烟生成和燃烧过程中物理和化学演化的巨大差异,这些差异表现为对碳烟纳观结构和表面官能团随碳烟氧化活性反应变化的深入探索研究。近些年,研究人员对碳烟的生成机理开展了系列研究,对碳烟生成各个物理化学反应阶段有了一定认识。结合光谱诊断技术可深入了解燃烧系统碳烟形成过程,确定碳烟颗粒分子组成、精细结构、浓度分布等特征,也可从碳烟结构变化、黑体辐射强度等方面详细了解碳烟形成过程。该文旨在阐述光谱诊断技术对烃类火焰碳烟表征的研究进展和发展趋势,探讨LIBS, LII和LIF等作为诊断工具在包含背景辐射的火焰中检测碳烟生成过程产生辐射强度准确性等问题。主要介绍了烃类火焰碳烟的形成机理(从前驱体产生、生长到颗粒生成、凝聚,最后进行颗粒氧化)。总结了探测碳烟性质光谱诊断方法的应用以及光谱诊断技术对燃烧过程中碳烟表征的研究现状,包括对碳烟体积分数、温度和基于图像处理的碳烟结构表征,反应碳烟前驱体(多环芳烃)、反应气氛、温度等对碳烟颗粒物生成的影响。最...  相似文献   

11.
运用OH-PLIF方法探测了不同燃料系数和出口湍流度下甲烷/空气的锥形预混火焰的火焰前锋结构.实验结果表明,网格湍流是火焰根部产生皱折和不稳定性的重要因素,并且这种不稳定性会沿着火焰面向下游发展;而在火焰下游尤其是火焰顶部,流场中的低频拟序结构是形成大尺度皱折以及破碎火焰面的直接原因.相比于富燃料工况,贫预混火焰的火焰前锋更容易产生不稳定性,产生大尺度的皱折.导致这种皱折的不稳定性只与燃料系数有关,完全依赖于火焰自身的动力学而与来流特征无关.  相似文献   

12.
微重力环境下V型层流预混火焰锋面不稳定性分析   总被引:1,自引:0,他引:1  
本章试图寻求描述火焰锋面动态特性的方法,以解释微重力环境下出现的V型火焰锋面的涟漪现象。采用线性稳定性理论从经典的G方程中导出了描述火焰锋面动态结构的一阶偏微分方程。采用该方程计算了声波扰动后,不同时刻的V型火焰锋面的动态结构.对于谐波扰动,其频率与波数的关系是分析固有火焰锋面不稳定性的基础。因此,微重力环境下V型火焰锋面的不稳定性可能是声波与谐波相耦合的结果。  相似文献   

13.
1前言加力燃烧室的燃油浓度分布,对加力燃烧室的性能,如燃烧效率、燃烧稳定性等有重要影响。在加力燃烧室的设计、研制过程中,需要燃油浓度场的计算做为设计、研制的辅助手段。本文发展了轨道扩散法用于计算燃油浓度分布,并首次利用燃油浓度分布来计算稳定器后火焰前锋的位置。为加力燃烧室的设计分析和性能改进提供依据与手段。2浓度场计算浓度分布计算采用轨道扩散模型。其基本要点为:(1)燃油一出咳喘即被雾化成按一定初始尺寸分布的油珠群;(2)相同尺寸组的油珠沿其最大概率轨道运动,同时又绕该轨道进行扩散和蒸发;(3)认为…  相似文献   

14.
本文通过视频信号与声频信号实验分析了燃气射流火焰的声发射特征。燃气火焰的声发射在出现上有其突发性,与火焰的不稳定工况有关。当气流速度使火焰面达到临界脱火状态时,声发射达到最大。初步分析表明,当气流速度达到可以使未燃混合气突入火焰面内使火焰发生微小爆炸,引致声发射在宏观上突然增加。本文分析对于通过声波监测火焰;预警脱火有一定作用。  相似文献   

15.
原子吸收法和原子发射法测定钾的比较   总被引:14,自引:0,他引:14  
用日立180-30型原子吸收法分光光度计,在波长在766.5nm下,用原子吸收法和原子发射法测定兔血中钾的含量变化,并进行两种方法的对比实验,结果表明,两种方法的灵敏度和检出限很接近,发射法灵敏度稍高,两种方法的精密度和准确度非常吻合,均能满足规分析的要求,两种方法的回收率都在95~105%之间,吸收法受酸度和温度影响较小,而发射法稍大,笔者认为:因发射法不同元素灯,测定浓度范围大,灵敏度也高,从  相似文献   

16.
火焰特征发射谱线研究   总被引:8,自引:3,他引:5  
本文利用CCD光纤光谱仪,通过实验确定了木基燃料燃烧火焰光谱中出现的特征谱线是K,Na 的原子发射谱线,测定了特征谱线出现时的火焰温度,指出可以通过特征谱线的出现与否来确定火焰的温度范围。还发现火焰的光谱形状和火焰的燃烧状态密切相关,包含大量和燃烧有关的信息,并且对煤烟颗粒有较强的抗干扰性。通过对火焰光谱形状的分析可判断出火焰的燃烧状况,进行燃烧诊断。  相似文献   

17.
火焰原子吸收光谱分析增敏作用的研究   总被引:15,自引:3,他引:12  
研究了三种有机溶剂、五种有机试剂、八种表面活性及水溶性高分子化合物对生命科学、环境科学上感兴趣的十一种元素Fe、Co、Ni、Mn、Zn、Cu、Cd、Cr、Sr、Pb、Mg等的增敏作用。它们对这些元素都有不同程度的增敏,最大值敏倍数达9.5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号