首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Hui Y  Wong M  Kim JO  Love J  Ansley DM  Chen DD 《Electrophoresis》2012,33(12):1911-1920
Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide synthase and a risk factor for cardiovascular events. We have developed a new derivatization method to enable baseline separation of the regio-isomers, ADMA, and symmetric dimethylarginine (SDMA), within 15 min on a C18 reverse phase column. Reacting naphthalene-2,3-dicarboxaldehyde with ADMA and SDMA in the presence of 2-mercaptoethanol produces corresponding 2,3-dihydro-benzo[f]isoindol-1-ones that are more stable than previously reported ortho-phthaldialdehyde and 2-mercaptoethanol derivatives. LC-MS/MS quantitation of these derivatives can be used to determine ADMA and SDMA concentrations in the plasma of patients to receive on-pump coronary artery bypass grafting (CABG) surgery. The LOD, LOQ and lower LOQ (LLOQ) of this method were determined to be 2.6, 8.7, and 25 nM for ADMA, and 2.5, 8.3, and 25 nM for SDMA, respectively, with consumption of only 50 μL of plasma. The relative standard deviations and relative errors of the intraday and interday determinations, as measurements of reproducibility and accuracy, are all within 15%. The ADMA and SDMA concentrations in patient plasma are 298.1 ± 11.2 nM (mean ± S.E.M., n = 123) and 457.7 ± 19.8 nM (mean ± S.E.M., n = 123), respectively. Upon unblinding of our clinical trial, these predetermined values might explain patient clinical outcomes associated with on-pump CABG surgery, as ADMA is known to inhibit nitric oxide production. Furthermore, this derivatization reaction in conjunction with LC-MS/MS analysis may open a venue to explore alternative chemical labeling modes for LC-MS/MS applications, such as analysis of other amino acids, metabolites, and peptides containing primary amine group(s).  相似文献   

2.
Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l‐ arginine to l‐ citrulline. l‐ Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l‐ arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l‐ arginine, l‐ citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6‐pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse‐phase column. Serum aliquots (100 μL) were spiked with isotope‐labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R 2 = 0.9966–0.9986) for all derivatized compounds. Good accuracy (94.67–99.91%) and precision (1.92–11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l‐ arginine and l‐ citrulline in angiologic patients. This robust and fast LC‐ESI‐MS method may be a useful tool in quantitative analysis of l‐ arginine, ADMA, SDMA and l‐ citrulline.  相似文献   

3.
The present study is based on the assumption that changes in an ADMA-DDAH-NOS (ADMA-asymmetrical dimethylarginine; DDAH-dimethyl-arginine dimethylaminohydrolase; NOS-nitric oxide synthase) system could be employed as indirect markers for recombinant human erythropoietin (rHuEPO) administration in doping control. We assessed a predictive value of four proposed new markers for rHuEPO abuse. Preliminary data showed that concentrations of ADMA, symmetrical dimethylarginine (SDMA), citrulline and arginine in human urine were increased after administration of a single intravenous erythropoietin injection (2000 U day(-1), Epocrine, St-Petersburg, Russia). The study of variations of ADMA, SDMA, arginine and citrulline levels before and after rHuEPO administration was performed with two healthy male volunteers. Urine samples were collected before rHuEPO administration and urinary concentrations of ADMA and SDMA were determined at 10.0-40 microg mL(-1) and of arginine and citrulline at 0.5-10 microg mL(-1). A single dose injection of rHuEPO caused an increase in ADMA, SDMA, arginine and citrulline concentrations up to 40-270 microg mL(-1), 40-240 microg mL(-1), 10-60 microg mL(-1) and 12-140 microg mL(-1), respectively. These preliminary results indicated that an indirect approach could be used as a pre-screening of urine samples in order to decrease the number of samples with a low probability of rHuEPO abuse and, thus, save costs and human workload.  相似文献   

4.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and an established biomarker for endothelial function, while symmetric dimethylarginine (SDMA), an emerging biomarker for renal function, has been shown to outperform creatinine-based equations for estimated glomerular filtration rate. In order to study these analytes for clinical research, a fast and simple method for measuring arginine (ARG), SDMA, and ADMA in plasma by liquid chromatography–tandem mass spectrometry (LC-MS/MS) has been developed. Plasma (50 μL) was mixed with 50 μL of internal standard of 13C-arginine and d7-ADMA followed by protein precipitation with methanol containing 1% ammonium acetate (300 μL). After centrifugation, the supernatant (100 μL) was mixed with 300 μL of acetonitrile with 1% formic acid, and the mixture was injected onto a silica column monitored by a mass spectrometer. The analytical cycle time was 5.0 min. The method was linear from 5.7 to 489.7 μM for ARG, 0.06 to 5.15 μM for SDMA, and from 0.34 to 5.65 μM for ADMA, with an accuracy of 99.0–120.0%. Total coefficients of variation for all analytes ranged from 2.7% to 7.7% for three concentration levels. The effects of hemolysis, lipemia, uremia, icterus, specimen tube types, storage at different temperature, and freeze/thaw were thoroughly investigated. Reference ranges were established using 51 well-defined reference subjects (12 men and 39 women, age 19–64 years): 53.1–129.7 μM for ARG, 0.32–0.65 μM for SDMA, and 0.36–0.67 μM for ADMA. In conclusion, the validated LC-MS/MS method described here offers a fast and reliable ARG, SDMA, and ADMA quantitation in plasma with minimum sample preparation.  相似文献   

5.
Nitric oxide (NO) is one of the most important mediators and neurotransmitters and its levels change under pathological conditions. NO production may be regulated by endogenous nitric oxide synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Most of the interest is focused on ADMA, since this compound is present in plasma and urine and accumulation of ADMA has been described in many disease states but little is known about cerebrospinal fluid (CSF) concentrations of this compound and of its structural isomer symmetric dimethylarginine (SDMA). To determine the levels of methylarginines, we here present a new hydrophilic interaction chromatography (HILIC)-MS/MS method for the precise determination of these substances in CSF from microdialysis samples of rat prefrontal cortex (PFC). The method requires only minimal sample preparation and features isotope-labelled internal standards.  相似文献   

6.
The polypeptide hormone erythropoietin (EPO), which is a forbidden doping drug, was determined by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The hypothesis about the influence of EPO on the asymmetric dimethylarginine (ADMA)-dimethylargininedime-thylaminohydrolase (DDAH)-NO-synthase system was verified. Changes in this system can serve as indirect biochemical markers of the presence of the forbidden EPO drug in the organism. In the test group, the concentrations of biochemical markers varied from 10 to 40 μg/ml for ADMA and symmetrical DMA (SDMA) and from 0.5 to 10 μg/ml for arginine and citrulline. A single intravenous administration of r-HuEPO (Epocrin, 2000 ME/day) for two volunteers reliably increased ADMA, SDMA, arginine, and citrulline concentrations to 40–270 μg/ml, 40–240μg/ml, 10–60 μg/ml, and 12–140 μg/ml, respectively, with respect to the reference values. The simultaneous increase in arginine, methylarginines, and citrulline contents could be an indirect marker of EPO abuse. The method is recommended for fast screening analysis.  相似文献   

7.
Experimental studies document that increased asymmetric dimethylarginine (ADMA) blood levels inhibit NOS significantly, reducing NO generation. ADMA measurement often needs sample cleanup by SPE prior to chromatography and precolumn derivatization that cannot be easily employed in a routine clinical setting. We set up a new reliable CE method to measure ADMA, symmetric dimethylarginine (SDMA), and arginine without sample extraction or precolumn derivatization in order to examine their concentrations in human plasma. Sample was concentrated prior to CE injection and analytes were monitored by UV detection. CE analysis was performed in an uncoated fused-silica capillary, 75 microm id and 60.2 cm length (50 cm to the detection window), injecting 1 s water plug (0.5 psi) followed by 10 s of the sample (0.5 psi). Separation was carried out in a 50 mmol/L Tris-phosphate run buffer at pH 2.30, 15 degrees C and 15 kV (75 microA) at normal polarity. Recovery of plasma ADMA was 101-104% and inter-day CV was less than 3%. Assay performance was evaluated measuring the levels of arginine and its dimethyl derivatives in 77 subjects. Passing-Bablok regression and Bland-Altman test for methods comparison suggest that the data obtained by our method and by a reference CE-LIF assay are similar.  相似文献   

8.
Asymmetric N(G),-N(G)-dimethylarginine (ADMA) increases in diseases such as renal failure, diabetes mellitus, and hypercholesterolemia. The feasibility and utility of a hydrophilic interaction chromatography (HILIC) method for the separation of free L-arginine (Arg), ADMA, and symmetric N(G),-N(G')-dimethylarginine (SDMA) on a typical silica column were explored and the impact of some experimental parameters on the chromatographic behavior of these analytes was investigated. The effect of water and TFA content in mobile phase and of column temperature was investigated during the development of a fast and simple HILIC-MS/MS method that might be suitable for the quantification of free Arg, ADMA, and SDMA in plasma for routine analysis. Our results show that a good compromise between efficiency and peak shape with acceptable retention and total chromatographic run time is achieved using an ACN/water (90:10) mobile phase with TFA% as additive ranging from 0.015 to 0.025% and column temperature ranging from 25 to 30 degrees C.  相似文献   

9.
建立了简单、灵敏和快速分离测定人体血浆中L-精氨酸(ARG)、不对称二甲基精氨酸(ADMA)和对称二甲基精氨酸(SDMA)的等度高效液相色谱-质谱联用方法.采用选择性离子检测(SIM)和大气压化学电离离子化(APCI),L-高精氨酸作内标,整个方法测定时间在5min以内.ARG,ADMA和SDMA的分析限均为0.2μmol/L,日间和日内测定的精密度分别为2.9%~6.7%和2.1%~5.2%,标准加入回收率为94.0%~105.0%.采用上述方法测定人体血浆中的精氨酸及二甲基精氨酸的含量,结果令人满意.  相似文献   

10.
NG,NG‐dimethyl‐l ‐arginine (asymmetric dimethylarginine, ADMA),NG‐monomethyl‐l ‐arginine (l ‐NMMA) and NG,NG‐dimethyl‐l ‐arginine (symmetric dimethylarginine, SDMA) are released during hydrolysis of proteins containing methylated arginine residues. ADMA and l ‐NMMA inhibit nitric oxide synthase by competing with l ‐arginine substrate. All three methylarginine derivatives also inhibit arginine transport. To enable investigation of methylarginines in diseases involving impaired nitric oxide synthesis, we developed a high‐performance liquid chromatography (HPLC) assay to simultaneously quantify arginine, ADMA, l ‐NMMA and SDMA. Our assay requires 12 μL of plasma and is ideal for applications where sample availability is limited. We extracted arginine and methylarginines with mixed‐mode cation‐exchange columns, using synthetic monoethyl‐l ‐arginine as an internal standard. Metabolites were derivatized with ortho‐phthaldialdeyhde and 3‐mercaptopropionic acid, separated by reverse‐phase HPLC and quantified with fluorescence detection. Standard curve linearity was ≥0.9995 for all metabolites. Inter‐day coefficient of variation (CV) values were ≤5% for arginine, ADMA and SDMA in human plasma and for arginine and ADMA in mouse plasma. The CV value for l ‐NMMA was higher in human (10.4%) and mouse (15.8%) plasma because concentrations were substantially lower than ADMA and SDMA. This assay provides unique advantages of small sample volume requirements, excellent separation of target metabolites from contaminants and validation for both human and mouse plasma samples. © 2015 The Authors Biomedical Chromatography published by John Wiley & Sons, Ltd.  相似文献   

11.
N(G)-Monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), and N(G),N(G)'-dimethyl-L-arginine (SDMA) are emerging cardiovascular risk factors. A high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of L-NMMA, ADMA and SDMA is described. The assay employed 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorescent derivatization reagent. After solid phase extraction with cation-exchange column, the methylated arginines were converted to fluorescent derivatives with NBD-F, and the derivatives were separated within 32 min on a reversed-phase column. Nomega-Propyl-L-arginine was Used as an internal standard. Extrapolated detection limits were 12 nM (12 fmol per injection) for L-NMMA and 20 nM (20 fmol per injection) for ADMA and SDMA, respectively, with a signal-to-noise ratio of 3. The calibration curves for L-NMMA, ADMA and SDMA were linear within the range of 50-5000 fmol. The method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in 200 microl of rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.03, 0.80 +/- 0.25 and 0.40 +/- 0.21 microM, respectively (n = 5).  相似文献   

12.
Zhu C  Liang QL  Hu P  Wang YM  Luo GA 《Talanta》2011,85(4):1711-1720
Type 2 diabetes mellitus (T2DM) and its attendant complications, such as diabetic nephropathy (DN), impose a significant societal and economic burden. The investigation of discovering potential biomarkers for T2DM and DN will facilitate the prediction and prevention of diabetes. Phospholipids (PLs) and their metabolisms are closely allied to nosogenesis and aggravation of T2DM and DN. The aim of this study is to characterize the human plasma phospholipids in T2DM and DN to identify potential biomarkers of T2DM and DN. Normal phase liquid chromatography coupled with time of flight mass spectrometry (NPLC-TOF/MS) was applied to the plasma phospholipids metabolic profiling of T2DM and DN. The plasma samples from control (n = 30), T2DM subjects (n = 30), and DN subjects (n = 52) were collected and analyzed. The significant difference in metabolic profiling was observed between healthy control group and DM group as well as between control group and DN group by the help of partial least squares discriminant analysis (PLS-DA). PLS-DA and one-way analysis of variance (ANOVA) were successfully used to screen out potential biomarkers from complex mass spectrometry data. The identification of molecular components of potential biomarkers was performed on Ion trap-MS/MS. An external standard method was applied to quantitative analysis of potential biomarkers. As a result, 18 compounds in 7 PL classes with significant regulation in patients compared with healthy controls were regarded as potential biomarkers for T2DM or DN. Among them, 3 DM-specific biomarkers, 8 DN-specific biomarkers and 7 common biomarkers to DM and DN were identified. Ultimately, 2 novel biomarkers, i.e., PI C18:0/22:6 and SM dC18:0/20:2, can be used to discriminate healthy individuals, T2DM cases and DN cases from each other group.  相似文献   

13.
Tsunoda M  Nonaka S  Funatsu T 《The Analyst》2005,130(10):1410-1413
A column-switching high-performance liquid chromatography (HPLC)-fluorescence detection method for the determination of three methylated arginines, N(G)-monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (asymmetric dimethyl-L-arginine, ADMA), and N(G),N(G)'-dimethyl-L-arginine (symmetric dimethyl-L-arginine, SDMA), which are endogenous nitric oxide synthase inhibitors, was developed. After fluorescence derivatization of plasma samples with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), the samples were injected into the HPLC system. The NBD-derivatized methylated arginines were trapped on a cation exchange column with filter to remove proteins, separated within 42 min on a reversed-phase column, and detected at an emission wavelength of 530 nm with excitation at 470 nm. The detection limits were 10 fmol for L-NMMA and 20 fmol for ADMA and SDMA with a signal-to-noise ratio of 3. A good linearity for calibration curves for each methylated arginine was observed within the range of 50-5000 fmol using homoarginine as an internal standard. The proposed method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.01, 0.73 +/- 0.02 and 0.41 +/- 0.05 micromol l(-1), respectively (n= 5).  相似文献   

14.
Arginine (ARG) is a substrate for endogenous nitric oxide (NO) production whereas its metabolite, asymmetric dimethylarginine (ADMA), acts as an inhibitor. Sufficient NO production is essential for cardiovascular key functions, thus elevated concentration levels of ADMA are related to a range of cardiovascular diseases. Owing to the lack of reliable methods for the measurement of ARG and ADMA in human plasma, concentration values determined with these methods can differ considerably. We present here a simple and very robust liquid chromatographic/mass spectrometric method for the determination of ARG and ADMA utilizing isotope-labeled internal standards. Sample preparation requires only protein precipitation; the analytes were derivatized with o-phthalaldehyde-mercaptoethanol and separated on a reversed-phase C(18) column with gradient elution. The analytes were detected with an electrospray ionization ion trap instrument working in the full-scan single mass spectrometry mode. Concentration values obtained with this method for healthy controls were ARG = 63.9 +/- 23.9 microM and ADMA = 0.355 +/- 0.066 microM, with a normal range for ADMA from 0.225 to 0.485 microM. The corresponding values for end-stage chronic renal failure patients are ARG = 48.1 +/- 18.5 microM, p < 0.01 and ADMA = 0.673 +/- 0.134 M, p < 0.001.  相似文献   

15.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) method to determine levonorgestrel in human plasma was developed and fully validated. After hexane-ethyl acetate (70:30, v/v) induced extraction from the plasma samples, levonorgestrel was subjected to LC/MS/MS analysis using electro-spray ionization. The MS system was operated in the selected reaction monitoring mode. Chromatographic separation was performed on a Hypersil BDS C18 column (i.d. 2.1x50 mm, particle size 3 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.25-90 ng/mL for levonorgestrel. The lower limit of quantification of the method was 0.25 ng/mL for levonorgestrel. The intra- and inter-batch precision was 3.7-10.2 and 5.1-12.9%, respectively, for all quality control samples at concentrations of 0.5, 6.0 and 45.0 ng/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for levonorgestrel compared with those methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method was successfully used for a bioequivalence study of two tablet formulations of levonorgestrel in healthy volunteers.  相似文献   

16.
Reversed-phase liquid chromatography (LC) and LC/tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the determination of etoricoxib in pharmaceutical dosage forms. The LC method was performed by reversed-phase chromatography on a Synergi fusion C18 column (150 x 4.6 mm id) maintained at ambient temperature. The mobile phase consisted of 0.01 M phosphoric acid, pH 3.0-acetonitrile (62 + 38, v/v) at a flow rate of 1.0 mL/min, and photodiode array detection at 234 nm was used. The chromatographic separation was obtained within 7.0 min, and calibration curves were linear in the concentration range of 0.02-150 microg/mL. The LC/MS/MS method was performed on a Luna C18 column (50 x 3.0 mm id). The mobile phase consisted of acetonitrile-water (95 + 5)-0.1% acetic acid (90 + 10, v/v). Detection was performed by positive electrospray ionization in the multiple reaction monitoring mode, monitoring the transitions 359.3 > 280.0 and 332.0 > 95.0 for etoricoxib and piroxicam (internal standard), respectively. The chromatographic separation was obtained within 2.0 min, and calibration curves were linear in the concentration range of 1-5000 ng/mL. Validation parameters, such as specificity, linearity, precision, accuracy, and robustness, were evaluated, which gave results within the acceptable range for both methods. Moreover, the proposed methods were successfully applied for routine quality control analysis of pharmaceutical products and showed significant correlation (r = 0.9999) of the results.  相似文献   

17.
Cefuroxime lysine is a new second‐generation cephalosporins, which can penetrate the blood–brain barrier to cure the meningitis. In order to investigate its acute toxicokinetic study after intraperitoneal injection of 675 mg/kg cefuroxime lysine, a sensitive and clean ultra‐fast liquid chromatography–tandem mass spectrometry (UFLC‐MS/MS) method for the determination of cefuroxime lysine in microdialysate samples was developed and validated, which was compared with UFLC‐UV as a reference method. Chromatographic separation was performed on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 µm), with an isocratic elution of 0.1% formic acid in acetonitrile–0.1% formic acid in water (45:55, v/v) for LC‐MS and acetonitrile–20 mm potassium dihydrogen phosphate (pH 3.0,20:80, v/v) for LC‐UV. The lower limit of detection was 0.01 µg/mL for LC‐MS and 0.1 µg/mL for LC‐UV method, with the same corresponding linearity range of 0.1–50 µg/mL. The intra‐ and inter‐day precisions (relative standard deviation) for both methods were from 1.1 to 8.9%, while the accuracy was all within ±10.9%. The results of both methods were finally compared using paired t‐test; the results indicated that the concentrations measured by the two methods correlated significantly (p < 0.05), which suggested that the two methods based on LC‐MS and LC‐UV were suitable for the acute toxicokinetic study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A fully automated analyzer for methylated L-arginine metabolites [N,N-dimethyl-L-arginine (ADMA), N-methylarginine (NMMA) and N,N'-dimethyl-L-arginine (SDMA)] by high-performance liquid chromatography with post-column fluorescence derivatization was developed. This system consists of an on-line extraction, a separation on a reversed phase ion-pair chromatograph, a post-column derivatization by o-phthaladehyde (OPA) and thiol reaction, and fluorescence detection. NMMA, ADMA and SDMA were separated in 40 min with isocratic elution by a combination of octanoate and cyclohexane carboxylate as ion-pair reagents. The eluate was monitored at 450 nm with excitation at 337 nm. The calibration curves for NMMA, ADMA and SDMA showed linearity over the range from 0.05 micromol l(-1) (0.5 pmol on column) to 5.0 micromol l(-1) (50 pmol on column). This method does not require any time-consuming pre-treatment and requires only 10 microl of plasma sample for assay.  相似文献   

19.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

20.

Background

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) formation inhibitor, has emerged as a promising biomarker of NO-associated endothelial dysfunction in cardiovascular diseases as well in chronic renal failure. The interest in potentially fundamental role of this metabolite, in basic and clinical research, led to the development of numerous analytical methods for the quantitative determination of ADMA and dimethylarginines in biological systems, notably plasma, serum and urine.

Objectives

The aim of this work was to present a simple, fast and accurate UPLC-tandem-MS-based method for the simultaneous determination and quantification of arginine, ADMA, SDMA, NMMA, homo-arginine and citrulline. This method is designed for high sample throughput of only 10 μL of human plasma, serum or urine.

Methods

The analysis time is reduced to 1.9 min by an ultrahigh-performance liquid chromatography run coupled with electrospray ionization (ESI) in the positive mode tandem mass spectrometry detection.

Results

The method was validated in plasma, serum and urine. Correlation coefficients (r2) of the calibration curves in all matrices considered ranged from 0.9810 to 0.9993. Inter- and intra-assay precision, accuracy, recovery and carry-over were evaluated for validation. The LOD was 0.01 μM for all compounds in water, plasma and serum and 0.1 μM in urine. The LOQ was 0.05 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit in water, plasma and serum; while in urine was 0.1 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit.The precision was ranged from 1% to 15% expressed as CV% and the accuracy (bias %) was <±7% for all added concentrations with the exception of NMMA (−10%).ADMA mean plasma levels, measured in healthy adults and newborns, were in accord with literature data published: (M ± SD) 0.56 ± 0.10 μM and 0.84 ± 0.21 μM, respectively, showing that ADMA levels in plasma decreased with age. In serum we have similar data (0.54 ± 0.18 μM and 1.14 ± 0.36 μM), while in neonatal urine ADMA was 11.98 ± 7.13 μmol mmol−1 creatinine.

Conclusions

Data from calibration curves and method validation reveal that the method is accurate and precise. The fast run time, the feasibility of high sample throughput and the small amount of sample required make this method very suitable for routine analysis in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号