首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l‐ arginine to l‐ citrulline. l‐ Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l‐ arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l‐ arginine, l‐ citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6‐pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse‐phase column. Serum aliquots (100 μL) were spiked with isotope‐labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R 2 = 0.9966–0.9986) for all derivatized compounds. Good accuracy (94.67–99.91%) and precision (1.92–11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l‐ arginine and l‐ citrulline in angiologic patients. This robust and fast LC‐ESI‐MS method may be a useful tool in quantitative analysis of l‐ arginine, ADMA, SDMA and l‐ citrulline.  相似文献   

2.
Nitric oxide (NO) is one of the most important mediators and neurotransmitters and its levels change under pathological conditions. NO production may be regulated by endogenous nitric oxide synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Most of the interest is focused on ADMA, since this compound is present in plasma and urine and accumulation of ADMA has been described in many disease states but little is known about cerebrospinal fluid (CSF) concentrations of this compound and of its structural isomer symmetric dimethylarginine (SDMA). To determine the levels of methylarginines, we here present a new hydrophilic interaction chromatography (HILIC)-MS/MS method for the precise determination of these substances in CSF from microdialysis samples of rat prefrontal cortex (PFC). The method requires only minimal sample preparation and features isotope-labelled internal standards.  相似文献   

3.
N(G)-Monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), and N(G),N(G)'-dimethyl-L-arginine (SDMA) are emerging cardiovascular risk factors. A high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of L-NMMA, ADMA and SDMA is described. The assay employed 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorescent derivatization reagent. After solid phase extraction with cation-exchange column, the methylated arginines were converted to fluorescent derivatives with NBD-F, and the derivatives were separated within 32 min on a reversed-phase column. Nomega-Propyl-L-arginine was Used as an internal standard. Extrapolated detection limits were 12 nM (12 fmol per injection) for L-NMMA and 20 nM (20 fmol per injection) for ADMA and SDMA, respectively, with a signal-to-noise ratio of 3. The calibration curves for L-NMMA, ADMA and SDMA were linear within the range of 50-5000 fmol. The method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in 200 microl of rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.03, 0.80 +/- 0.25 and 0.40 +/- 0.21 microM, respectively (n = 5).  相似文献   

4.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and an established biomarker for endothelial function, while symmetric dimethylarginine (SDMA), an emerging biomarker for renal function, has been shown to outperform creatinine-based equations for estimated glomerular filtration rate. In order to study these analytes for clinical research, a fast and simple method for measuring arginine (ARG), SDMA, and ADMA in plasma by liquid chromatography–tandem mass spectrometry (LC-MS/MS) has been developed. Plasma (50 μL) was mixed with 50 μL of internal standard of 13C-arginine and d7-ADMA followed by protein precipitation with methanol containing 1% ammonium acetate (300 μL). After centrifugation, the supernatant (100 μL) was mixed with 300 μL of acetonitrile with 1% formic acid, and the mixture was injected onto a silica column monitored by a mass spectrometer. The analytical cycle time was 5.0 min. The method was linear from 5.7 to 489.7 μM for ARG, 0.06 to 5.15 μM for SDMA, and from 0.34 to 5.65 μM for ADMA, with an accuracy of 99.0–120.0%. Total coefficients of variation for all analytes ranged from 2.7% to 7.7% for three concentration levels. The effects of hemolysis, lipemia, uremia, icterus, specimen tube types, storage at different temperature, and freeze/thaw were thoroughly investigated. Reference ranges were established using 51 well-defined reference subjects (12 men and 39 women, age 19–64 years): 53.1–129.7 μM for ARG, 0.32–0.65 μM for SDMA, and 0.36–0.67 μM for ADMA. In conclusion, the validated LC-MS/MS method described here offers a fast and reliable ARG, SDMA, and ADMA quantitation in plasma with minimum sample preparation.  相似文献   

5.
NG,NG‐dimethyl‐l ‐arginine (asymmetric dimethylarginine, ADMA),NG‐monomethyl‐l ‐arginine (l ‐NMMA) and NG,NG‐dimethyl‐l ‐arginine (symmetric dimethylarginine, SDMA) are released during hydrolysis of proteins containing methylated arginine residues. ADMA and l ‐NMMA inhibit nitric oxide synthase by competing with l ‐arginine substrate. All three methylarginine derivatives also inhibit arginine transport. To enable investigation of methylarginines in diseases involving impaired nitric oxide synthesis, we developed a high‐performance liquid chromatography (HPLC) assay to simultaneously quantify arginine, ADMA, l ‐NMMA and SDMA. Our assay requires 12 μL of plasma and is ideal for applications where sample availability is limited. We extracted arginine and methylarginines with mixed‐mode cation‐exchange columns, using synthetic monoethyl‐l ‐arginine as an internal standard. Metabolites were derivatized with ortho‐phthaldialdeyhde and 3‐mercaptopropionic acid, separated by reverse‐phase HPLC and quantified with fluorescence detection. Standard curve linearity was ≥0.9995 for all metabolites. Inter‐day coefficient of variation (CV) values were ≤5% for arginine, ADMA and SDMA in human plasma and for arginine and ADMA in mouse plasma. The CV value for l ‐NMMA was higher in human (10.4%) and mouse (15.8%) plasma because concentrations were substantially lower than ADMA and SDMA. This assay provides unique advantages of small sample volume requirements, excellent separation of target metabolites from contaminants and validation for both human and mouse plasma samples. © 2015 The Authors Biomedical Chromatography published by John Wiley & Sons, Ltd.  相似文献   

6.
Experimental studies document that increased asymmetric dimethylarginine (ADMA) blood levels inhibit NOS significantly, reducing NO generation. ADMA measurement often needs sample cleanup by SPE prior to chromatography and precolumn derivatization that cannot be easily employed in a routine clinical setting. We set up a new reliable CE method to measure ADMA, symmetric dimethylarginine (SDMA), and arginine without sample extraction or precolumn derivatization in order to examine their concentrations in human plasma. Sample was concentrated prior to CE injection and analytes were monitored by UV detection. CE analysis was performed in an uncoated fused-silica capillary, 75 microm id and 60.2 cm length (50 cm to the detection window), injecting 1 s water plug (0.5 psi) followed by 10 s of the sample (0.5 psi). Separation was carried out in a 50 mmol/L Tris-phosphate run buffer at pH 2.30, 15 degrees C and 15 kV (75 microA) at normal polarity. Recovery of plasma ADMA was 101-104% and inter-day CV was less than 3%. Assay performance was evaluated measuring the levels of arginine and its dimethyl derivatives in 77 subjects. Passing-Bablok regression and Bland-Altman test for methods comparison suggest that the data obtained by our method and by a reference CE-LIF assay are similar.  相似文献   

7.
The article reports a simple, sensitive and fast LC/MS method for the analysis of L-arginine (L-Arg), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in human plasma. The homoarginine was used as the internal standard (IS). The chromatographic separation was achieved on C??(150 mm×2.1 mm, 5 μm) column with a mobile phase consisting of ammonium acetate (0.25 mmol/l) and methanol (93 : 7, v/v), at a flow rate of 0.2 ml/min. L-Arg, ADMA and SDMA were well separated by LC/MS with selective ion mode (SIM). The method was successfully applied to type 2 diabetes mellitus (T2DM) study. Twenty-one healthy controls and twenty-two T2DM patients before and after treatment two years were investigated. The results indicated that the level of ADMA in T2DM was significantly higher than that in healthy controls. Furthermore, ADMA has important association with the development of cardiovascular diseases.  相似文献   

8.
Tsunoda M  Nonaka S  Funatsu T 《The Analyst》2005,130(10):1410-1413
A column-switching high-performance liquid chromatography (HPLC)-fluorescence detection method for the determination of three methylated arginines, N(G)-monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (asymmetric dimethyl-L-arginine, ADMA), and N(G),N(G)'-dimethyl-L-arginine (symmetric dimethyl-L-arginine, SDMA), which are endogenous nitric oxide synthase inhibitors, was developed. After fluorescence derivatization of plasma samples with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), the samples were injected into the HPLC system. The NBD-derivatized methylated arginines were trapped on a cation exchange column with filter to remove proteins, separated within 42 min on a reversed-phase column, and detected at an emission wavelength of 530 nm with excitation at 470 nm. The detection limits were 10 fmol for L-NMMA and 20 fmol for ADMA and SDMA with a signal-to-noise ratio of 3. A good linearity for calibration curves for each methylated arginine was observed within the range of 50-5000 fmol using homoarginine as an internal standard. The proposed method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.01, 0.73 +/- 0.02 and 0.41 +/- 0.05 micromol l(-1), respectively (n= 5).  相似文献   

9.
We have developed a simple, sensitive, and robust liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method to determine free 3-nitrotyrosine concentrations in human plasma of patients receiving on-pump coronary artery bypass grafting surgery. A one-step solid-phase extraction protocol was optimized to enrich the analyte at low nanomolar concentrations. The processed samples were analyzed by LC-MS/MS with a 2.1 × 100 mm Kinetex PFP column and a triple quadrupole mass spectrometer. The method was validated for 3-nitrotyrosine concentrations close to real patient plasma levels. The relative standard deviations or relative errors of the intraday and interday determinations were all within 10%. Limit of detection and limit of quantitation were determined to be 0.034 nM and 0.112 nM, respectively, while lower limit of quantitation was below 0.625 nM. No deterioration of the column performance was noticed after running a large number of patient samples. The results showed that the 3-nitrotyrosine concentrations in coronary sinus plasma samples were elevated after cardiopulmonary bypass (CPB) procedure. The pre-CPB and post-CPB concentrations of 3-nitrotyrosine in patient plasmas were 1.494 ± 0.107 nM and 2.167 ± 0.177 nM (mean ± SEM), respectively. Application of this method to more patients in clinical studies may help validate 3-nitrotyrosine as a meaningful biomarker for nitrosative stress and link patient characteristics, clinical outcomes, and cardioprotective treatments to endogenous nitrosative stress levels.  相似文献   

10.
Arginine (ARG) is a substrate for endogenous nitric oxide (NO) production whereas its metabolite, asymmetric dimethylarginine (ADMA), acts as an inhibitor. Sufficient NO production is essential for cardiovascular key functions, thus elevated concentration levels of ADMA are related to a range of cardiovascular diseases. Owing to the lack of reliable methods for the measurement of ARG and ADMA in human plasma, concentration values determined with these methods can differ considerably. We present here a simple and very robust liquid chromatographic/mass spectrometric method for the determination of ARG and ADMA utilizing isotope-labeled internal standards. Sample preparation requires only protein precipitation; the analytes were derivatized with o-phthalaldehyde-mercaptoethanol and separated on a reversed-phase C(18) column with gradient elution. The analytes were detected with an electrospray ionization ion trap instrument working in the full-scan single mass spectrometry mode. Concentration values obtained with this method for healthy controls were ARG = 63.9 +/- 23.9 microM and ADMA = 0.355 +/- 0.066 microM, with a normal range for ADMA from 0.225 to 0.485 microM. The corresponding values for end-stage chronic renal failure patients are ARG = 48.1 +/- 18.5 microM, p < 0.01 and ADMA = 0.673 +/- 0.134 M, p < 0.001.  相似文献   

11.
The present study is based on the assumption that changes in an ADMA-DDAH-NOS (ADMA-asymmetrical dimethylarginine; DDAH-dimethyl-arginine dimethylaminohydrolase; NOS-nitric oxide synthase) system could be employed as indirect markers for recombinant human erythropoietin (rHuEPO) administration in doping control. We assessed a predictive value of four proposed new markers for rHuEPO abuse. Preliminary data showed that concentrations of ADMA, symmetrical dimethylarginine (SDMA), citrulline and arginine in human urine were increased after administration of a single intravenous erythropoietin injection (2000 U day(-1), Epocrine, St-Petersburg, Russia). The study of variations of ADMA, SDMA, arginine and citrulline levels before and after rHuEPO administration was performed with two healthy male volunteers. Urine samples were collected before rHuEPO administration and urinary concentrations of ADMA and SDMA were determined at 10.0-40 microg mL(-1) and of arginine and citrulline at 0.5-10 microg mL(-1). A single dose injection of rHuEPO caused an increase in ADMA, SDMA, arginine and citrulline concentrations up to 40-270 microg mL(-1), 40-240 microg mL(-1), 10-60 microg mL(-1) and 12-140 microg mL(-1), respectively. These preliminary results indicated that an indirect approach could be used as a pre-screening of urine samples in order to decrease the number of samples with a low probability of rHuEPO abuse and, thus, save costs and human workload.  相似文献   

12.
Asymmetric N(G),-N(G)-dimethylarginine (ADMA) increases in diseases such as renal failure, diabetes mellitus, and hypercholesterolemia. The feasibility and utility of a hydrophilic interaction chromatography (HILIC) method for the separation of free L-arginine (Arg), ADMA, and symmetric N(G),-N(G')-dimethylarginine (SDMA) on a typical silica column were explored and the impact of some experimental parameters on the chromatographic behavior of these analytes was investigated. The effect of water and TFA content in mobile phase and of column temperature was investigated during the development of a fast and simple HILIC-MS/MS method that might be suitable for the quantification of free Arg, ADMA, and SDMA in plasma for routine analysis. Our results show that a good compromise between efficiency and peak shape with acceptable retention and total chromatographic run time is achieved using an ACN/water (90:10) mobile phase with TFA% as additive ranging from 0.015 to 0.025% and column temperature ranging from 25 to 30 degrees C.  相似文献   

13.
A fully automated analyzer for methylated L-arginine metabolites [N,N-dimethyl-L-arginine (ADMA), N-methylarginine (NMMA) and N,N'-dimethyl-L-arginine (SDMA)] by high-performance liquid chromatography with post-column fluorescence derivatization was developed. This system consists of an on-line extraction, a separation on a reversed phase ion-pair chromatograph, a post-column derivatization by o-phthaladehyde (OPA) and thiol reaction, and fluorescence detection. NMMA, ADMA and SDMA were separated in 40 min with isocratic elution by a combination of octanoate and cyclohexane carboxylate as ion-pair reagents. The eluate was monitored at 450 nm with excitation at 337 nm. The calibration curves for NMMA, ADMA and SDMA showed linearity over the range from 0.05 micromol l(-1) (0.5 pmol on column) to 5.0 micromol l(-1) (50 pmol on column). This method does not require any time-consuming pre-treatment and requires only 10 microl of plasma sample for assay.  相似文献   

14.

Background

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) formation inhibitor, has emerged as a promising biomarker of NO-associated endothelial dysfunction in cardiovascular diseases as well in chronic renal failure. The interest in potentially fundamental role of this metabolite, in basic and clinical research, led to the development of numerous analytical methods for the quantitative determination of ADMA and dimethylarginines in biological systems, notably plasma, serum and urine.

Objectives

The aim of this work was to present a simple, fast and accurate UPLC-tandem-MS-based method for the simultaneous determination and quantification of arginine, ADMA, SDMA, NMMA, homo-arginine and citrulline. This method is designed for high sample throughput of only 10 μL of human plasma, serum or urine.

Methods

The analysis time is reduced to 1.9 min by an ultrahigh-performance liquid chromatography run coupled with electrospray ionization (ESI) in the positive mode tandem mass spectrometry detection.

Results

The method was validated in plasma, serum and urine. Correlation coefficients (r2) of the calibration curves in all matrices considered ranged from 0.9810 to 0.9993. Inter- and intra-assay precision, accuracy, recovery and carry-over were evaluated for validation. The LOD was 0.01 μM for all compounds in water, plasma and serum and 0.1 μM in urine. The LOQ was 0.05 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit in water, plasma and serum; while in urine was 0.1 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit.The precision was ranged from 1% to 15% expressed as CV% and the accuracy (bias %) was <±7% for all added concentrations with the exception of NMMA (−10%).ADMA mean plasma levels, measured in healthy adults and newborns, were in accord with literature data published: (M ± SD) 0.56 ± 0.10 μM and 0.84 ± 0.21 μM, respectively, showing that ADMA levels in plasma decreased with age. In serum we have similar data (0.54 ± 0.18 μM and 1.14 ± 0.36 μM), while in neonatal urine ADMA was 11.98 ± 7.13 μmol mmol−1 creatinine.

Conclusions

Data from calibration curves and method validation reveal that the method is accurate and precise. The fast run time, the feasibility of high sample throughput and the small amount of sample required make this method very suitable for routine analysis in the clinical setting.  相似文献   

15.
建立了简单、灵敏和快速分离测定人体血浆中L-精氨酸(ARG)、不对称二甲基精氨酸(ADMA)和对称二甲基精氨酸(SDMA)的等度高效液相色谱-质谱联用方法.采用选择性离子检测(SIM)和大气压化学电离离子化(APCI),L-高精氨酸作内标,整个方法测定时间在5min以内.ARG,ADMA和SDMA的分析限均为0.2μmol/L,日间和日内测定的精密度分别为2.9%~6.7%和2.1%~5.2%,标准加入回收率为94.0%~105.0%.采用上述方法测定人体血浆中的精氨酸及二甲基精氨酸的含量,结果令人满意.  相似文献   

16.
Protein arginine methyltransferases methylate post-translationally arginine residues in proteins to synthesize monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), or symmetric dimethylarginine. Protein arginine methylation is involved in the regulation of signal transduction, RNA export, and cell proliferation. Moreover, upon proteolysis, arginines are released into the cytosol in which they exert important biological effects. Both MMA and ADMA are inhibitors of nitric oxide synthase and especially elevated levels of ADMA are associated with endothelial dysfunction and cardiovascular disease. Quantification of these analytes is commonly performed by HPLC after sample cleanup and derivatization. We propose a CE method in which these steps have been avoided and the procedure for sample preparation has been simplified. After acidic hydrolysis of proteins, samples were dried, resuspended in water, and directly injected in CE. A baseline separation of analytes was reached in a 60 cm x 75 microm id uncoated silica capillary, by using a Tris-phosphate run buffer at pH 2.15. This method allows an accurate assessment of protein arginine methylation degree in different biological samples such as whole blood, plasma, red blood cells, cultured cells, and tissue. Moreover, its good sensitivity permits to evaluate the methylation of a single protein type after the opportune purification steps. A method applicability concerns both clinical laboratories, where the evaluation of blood protein from numerous samples could be rapidly performed, and research laboratories where the factors affecting the arginine protein methylation degree could be easily studied.  相似文献   

17.
The polypeptide hormone erythropoietin (EPO), which is a forbidden doping drug, was determined by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The hypothesis about the influence of EPO on the asymmetric dimethylarginine (ADMA)-dimethylargininedime-thylaminohydrolase (DDAH)-NO-synthase system was verified. Changes in this system can serve as indirect biochemical markers of the presence of the forbidden EPO drug in the organism. In the test group, the concentrations of biochemical markers varied from 10 to 40 μg/ml for ADMA and symmetrical DMA (SDMA) and from 0.5 to 10 μg/ml for arginine and citrulline. A single intravenous administration of r-HuEPO (Epocrin, 2000 ME/day) for two volunteers reliably increased ADMA, SDMA, arginine, and citrulline concentrations to 40–270 μg/ml, 40–240μg/ml, 10–60 μg/ml, and 12–140 μg/ml, respectively, with respect to the reference values. The simultaneous increase in arginine, methylarginines, and citrulline contents could be an indirect marker of EPO abuse. The method is recommended for fast screening analysis.  相似文献   

18.
Cinchona alkaloid based chiral stationary phases (CSPs) were evaluated and compared for the enantiomer separation of a set of alpha-amino acid derivatives as selectands (SA), using ortho-phthalaldehyde (OPA), naphthalene-2,3-dicarboxaldehyde (NDA) and anthracene-2,3-dicarboxaldehyde (ADA) as reagents in the presence of acetonitrile. Protocols have been developed for the derivatization of most common amino acids in the absence of the usual thiol components (2-mercaptoethanol, mercaptosulphonic acid, sodium sulfite) under acidic and neutral conditions providing the corresponding isoindolin-1-one (phthalimidine) derivatives. They are stable for hours at various reaction conditions compared to thiol or sulfide modified isoindoles resulted by the OPA-thiol reaction type. Among the derivatizing agents, ADA afforded the highest retention factors (k) and for the majority of the analytes also resolution (Rs) and enantioselectivity (alpha) values (i.e. for tryptophan k1 = 23, Rs = 4.93 and alpha = 1.43). Structure variation of the CSPs and selector (SO), respectively indicates that steric arrangement around the binding cleft plays a major role in the enantiodiscriminating events. To provide more detailed information about the derivatization reaction itself, the proposed mechanism for the formation of the OPA derivative (isoindolin-l-one) was further evaluated by deuterium labeling and LC-MS analysis.  相似文献   

19.
We describe a simple derivatization method to determine aldehydes. This method is based on derivatization with D-cysteine and consecutive liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimum derivatization conditions of aldehydes with D-cysteine were 10 min at 50°C and pH 7.0. The formed alkyl thiazolidine-4-carboxylic acid derivatives were directly injected in LC-MS/MS. In the established condition, the method was used to detect eight aldehydes in beverages. The limit of detection (LOD) and limit of quantification (LOQ) of the aldehydes were 0.2-1.9 μg L(-1) and 0.7-6.0 μg L(-1) and the relative standard deviation was less than 2.0% at concentrations of 0.1 mg L(-1) and 1.0 mg L(-1) with the exception of octanal. All the beverage samples had detectable levels of methanal (0.033-0.145 mg L(-1)), ethanal (0.085-2.12 mg L(-1)), propanal (ND to 0.250 mg L(-1)), butanal (ND to 0.003 mg L(-1)), pentanal (ND to 0.471 mg L(-1)), hexanal (ND to 0.805 mg L(-1)), heptanal (0.019-3.91 mg L(-1)) and octanal (0.029-0.118 mg L(-1)).  相似文献   

20.
Monomethylarginine, asymmetric dimethylarginine and symmetric dimethylarginine were separated on a Wakopak Combi ODS with an acetonitrile–100 mm potassium phosphate buffer (pH 7.0; 1:1, v/v). Dimethylarginines were derived from o‐phthalaldehyde for the fluorescence detector and from 6‐ferrocenyl‐1‐hexanethiol for the electrochemical detector. The detection limits of the dimethylarginines in spiked plasma were 0.3–0.5 pmol by electrochemical detection and 1–2 pmol by fluorescence detection. The detection limits were improved over 30 times by electrochemical detection and 10 times by fluorescence detection compared with previous reports. In previous derivatization liquid chromatography, the reaction solutions, o‐phthalaldehyde, 2‐mercaptethanol and dimethylarginines were unstable and required quick derivatization at 4°C. By our proposed pre‐column methods, the dimethylarginines were derivatized at room temperature and the fluorescent products were stable for 6 h. The manipulation performance was greatly advanced compared with previous LC reports. This is the first report on stable and sensitive dimethylarginines by dual detection. The selectivity was also improved by dual detection. The proposed method was applied to preliminary monitoring of dimethylargines in plasma and urine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号