首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigate the influence of coating layer on acoustic wave propagation in a dispersed random medium consisting of coa.ted fibers.In the strong-scattering regime, the characteristics of wave scattering resonances are found to evolve regularly with the properties of the coating layer.By theoretical calculation,frequency gaps are found in acoustic excitation spectra in a random medium.The scattering cross section results present the evolution of scattering resonances with the properties of the coating layer,which offers a good explanation for the change of the frequency gaps.The velocity of the propagation quasi-mode is also shown to depend on the filling fraction of the coating layer.We use the generalized coherent potential-approximation approach to solve acoustic wave dispersion relations in a complicated random medium consisting of coating-structure scatterers.It is shown that our model reveals subtle changes in the behavior of the acoustic wave propagating quasi-modes.  相似文献   

3.
传统超声检测多使用直达波进行检测,但在各向异性、非均匀的复杂结构检测中存在诸多限制。将超声波在此类多重散射介质中的传播近似为扩散过程,探索采用超声扩散场信号进行复合材料表面缺陷的检测定位。在此过程中形成的扩散场能对介质密集采样,对缺陷的出现高度敏感。针对铺层结构为[0°/90°]12的碳纤维增强环氧树脂基复合材料板,基于Locadiff方法建立表面缺陷定位的理论模型,开展缺陷出现前后波形的理论不相关性计算。结合实验求解扩散系数,开展检测信号的不相关性分析。最后利用反演计算的模型给出缺陷的定位结果。结果表明,当缺陷直径为10 mm时,定位误差为6.99%;当缺陷直径为5 mm时,定位误差为9.29%,可以实现复合材料表面缺陷的定位。   相似文献   

4.
以水中紧密排列的平行圆柱体群为对象,研究平面超声脉冲经多重散射后的透射波性质,通过分析其中头波和散射波的特征获得对应的多重散射参数.对直径随机分布、位置无序排列、数量密度约100个/cm2、面积占空比约0.53的非接触圆柱体群,采用中心频率2.5 MHz的宽带脉冲波入射。为解决透射信号在时域表现出随机性的问题,将散射体尺寸、分布都相同但位置分布不同的多个模型仿真的透射波叠加平均后用于分析.在频域对头波的宽带衰减系数进行分析,并在时域研究散射波声强的时间演化曲线,获得了系统的弹性平均自由程、传输平均自由程等多重散射参数。经多重散射后,透射波中的头波表现出相干性,由不相干近似理论可对其对应的散射参数进行定性描述;散射波是不相干的,其对应的多重散射参数可近似利用扩散近似理论获得。   相似文献   

5.
6.
Temperature dependent physical effects of ultrasonic wave viz. ultrasonic attenuation due to interaction of sound wave and thermal phonons, thermoelastic loss and dislocation damping have been studied in beryllium chalcogenides (BeX, X = S, Se and Te) in the temperature range 50-500 K, along three crystallographic directions of propagation viz. [1 0 0], [1 1 0] and [1 1 1] for longitudinal and shear modes of propagation. Second and third order elastic moduli have been obtained using electrostatic and Born repulsive potentials and taking hardness parameter and nearest neighbour distance as input data. Gruneisen numbers, acoustic coupling constants and drag coefficients have been evaluated for longitudinal and shear waves along different directions of propagation and polarization. The results have been discussed and compared with the available data. It has been found that the temperature dependence of ultrasonic attenuation follows the temperature variation of diffusion coefficient and is mainly dominated by phonon-phonon interaction.  相似文献   

7.
Stimulated Raman-type acoustic scattering by bubble oscillations in three-phase marine sediments, which consist of a solid frame, the pore water, and air bubbles, is considered. A model is developed for the case of the bubbles surrounded by water. The acoustic properties of the sediments are described on the basis of the Biot theory of sound propagation in a fluid-saturated porous medium. Nonlinear wave equations are obtained for marine sediments containing air bubbles. Expressions for the nonlinear scattering coefficient and the threshold intensity of the exciting sound wave are derived. A possibility of an experimental observation of the scattering process is discussed.  相似文献   

8.
We show that the HERA data for the inclusive structure function F2(x,Q2) for x10−2 and 0.045Q245 GeV2 can be well described within the color dipole picture, with a simple analytic expression for the dipole–proton scattering amplitude, which is an approximate solution to the non-linear evolution equations in QCD. For dipole sizes less than the inverse saturation momentum 1/Qs(x), the scattering amplitude is the solution to the BFKL equation in the vicinity of the saturation line. It exhibits geometric scaling and scaling violations by the diffusion term. For dipole sizes larger than 1/Qs(x), the scattering amplitude saturates to one. The fit involves three parameters: the proton radius R, the value x0 of x at which the saturation scale Qs equals 1 GeV, and the logarithmic derivative of the saturation momentum λ. The value of λ extracted from the fit turns out to be consistent with a recent calculation using the next-to-leading order BFKL formalism.  相似文献   

9.
Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation(SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed.  相似文献   

10.
Application of coherent interaction of laser light with a focused ultrasonic wave to the technique of acoustooptic visualization in multiple-scattering media is discussed. By analyzing spatial distribution of the optical radiation modulated by ultrasound (the photocurrent at ultrasonic frequency), images of large-sized inhomogeneities embedded into the scattering medium have been obtained. A light-absorbing half-plane and a square with sides of 5 mm were used as the inhomogeneities. The visualization was performed under optimal conditions for measuring the alternating photocurrent calculated for the proposed model of coherent interaction between the laser and acoustic beams (the Raman-Nath diffraction). The alternating current at the ultrasonic frequency was obtained as a result of mixing the waves of the diffraction fields on the detector’s photocathode. All experimental values were obtained from a single measurement without averaging the alternating photocurrent at the ultrasonic frequency of 3 MHz, with the scattering parameter varying up to μL≤37.5, where μ is the extinction coefficient and L is the thickness of the scattering medium along the laser beam axis. The measured quantities varied in the course of the measurements by more than 10 orders of magnitude.  相似文献   

11.
王盼盼  周晨  宋杨  张援农  赵正予 《物理学报》2015,64(10):100205-100205
从声波扰动介质中的电波波动方程出发, 使用时域有限差分(FDTD)方法, 结合声波传播的FDTD 模型, 构建了描述声波和电波相互作用的数值模型, 并运用该模型分析风场和温度对无线电声波探测系统的探测高度的影响. 数值模拟结果表明: 温度与风场剖面的存在改变声波和电波散射回波的传播轨迹; 温度梯度剖面主要影响声波的传播速度, 风场剖面导致作为电波散射体的声波波阵面的偏移, 降低电波散射回波的强度并改变回波路径, 使得接收数据减少, 限制无线电声波探测系统的探测高度; 在强风背景下, 若降低声波散射体高度, 电波散射回波“聚束点”的偏移会有较大的改善, 但同时意味着探测高度的降低. 为了改善风场背景下无线电声波探测系统的探测高度, 可以使用双基地雷达或者增大接收天线面积等方法来实现.  相似文献   

12.
The acoustic scattering from a fluid-loaded stiffened cylindrical shell is described by using elasticity theory. The cylindrical shell is reinforced by a thin internal plate which is diametrically attached along the tube. In this model, cylindrical shell displacements and constraints expressed from elasticity theory are coupled to those of the plate at the junctions, where plate vibrations are described by using plate theory. The present model is first validated at low frequency range (k1a approximately 5-40) by comparison with a previous model based on the Timoshenko-Mindlin thin shell theory and by experimental results. Theoretical and experimental resonance spectra are then analyzed in a high frequency range (k1a approximately 120-200). Only resonances due to the S0 wave are clearly observed in this frequency range, and their modes of propagation are identified. Furthermore, A0 wave propagation is detected, because of the presence of the reflection of this wave at the shell-plate junctions.  相似文献   

13.
This paper provides a temporal model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having a rigid frame. This new time domain model of wave propagation takes into account the viscous and thermal losses of the medium as described by the model of Johnson et al. [D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech. 176, 379 (1987)] and Allard [J. F. Allard (Chapman and Hall, London, 1993)] modified by a fractional calculus based method applied in the time domain. This paper is devoted to the analytical calculus of acoustic field in a slab of porous material. The main result is the derivation of the expression of the scattering operators (reflection and transmission) which are the responses of the medium to an incident acoustic pulse. In this model the reflection operator is the sum of two contributions: the first interface and the bulk of the medium. Experimental and numerical results are given as a validation of our model.  相似文献   

14.
臧雨宸  高金彪 《计算物理》2020,37(6):700-708
在理论和数值上研究柱面波对多层球的声辐射力.基于声波的散射理论,得到声辐射力的解析解,并给出数值仿真.结果表明:在特定的kakr0处,柱面行波的辐射力可以是负值(k是波数,a是多层球的半径,r0是多层球到声源的距离).随着kr0增加到无穷大,仿真结果退化为平面波的情形.对双层球而言,每层的相对厚度影响曲线共振峰的大小和位置,但对三层球而言没有显著影响.当最内层的介质换成空气时,由于声阻抗差异较大,共振峰更加明显.该研究可以为研发新一代单行波声束声学镊子提供理论指导,该技术在生物医学超声和材料科学领域有广泛的应用.  相似文献   

15.
A new experimental method has been devised that directly determines the group velocities of surface acoustic waves. A point source and a point detector are employed to measure the ultrasonic transmission across a solid surface as a continuous function of the propagation direction. Results for single pulses give the times-of-flight for both Rayleigh surface waves (RSW's) and pseudo-surface-waves (PSW's). Calculations and measurements of the group velocities of the surface waves on silicon show some unanticipated behavior: fluid loading qualitiatively changes the group velocity curves for both RSW and PSW. In particular, the RSW branch gains an additional component which we denote here as an induced Rayleigh wave (IRW). If a wave train is employed in the experiment, the analog of phonon focusing is observed for the ultrasonic waves, modified by internal-diffraction effects. Systematic measurements of the wave intensities on silicon as a function of propagation distance are consistent with expected acoustic losses into the surrounding water: the attenuation length of a wave depends on the mode and frequency. A survey of surface-wave images on other crystals is included in this study.  相似文献   

16.
推导了扩散近似方程,通过半无限大均匀介质计算,用扩散理论分析解验证了数值方法的有效性.模拟了光在非均匀介质内的传输过程,给出了介质内光通量随时间变化的空间分布.结果表明,该基于扩散模型的数值方法能够模拟短脉冲光在强散射介质中的传播过程以及漫散射光的时间变化特性,并且借助于光通量空间分布能够准确模拟非均匀介质内内含物的位置.  相似文献   

17.
People are familiar with the acoustic feedback phenomenon, which results in a loud sound that is heard when a musician plays an electric instrument directly into a speaker. Acoustic feedback occurs when a source and a receiver are connected both acoustically through the propagation medium and electrically through an amplifier, such that the amplified received signal is continuously re-emitted by the source. The acoustic feedback can be initiated from a continuous sine wave. When the emitter and the receiver are in phase, resonance is obtained, which appears to be highly sensitive to any fluctuation of the propagation medium. Another procedure consists in initiating the acoustic feedback from a continuous loop of ambient noise. It then generates an unstable self-sustained feedback oscillator (SFO) that is tested here as a method for monitoring temperature fluctuations of a shallow-water oceanic environment. The goal of the present study is to reproduce and study the SFO at the laboratory scale in an ultrasonic waveguide. The experimental results demonstrate the potential applications of the SFO for the detection of a target in the framework of the acoustic-barrier problem in shallow-water acoustics.  相似文献   

18.
An experimental technique for the investigation of the behaviour of acoustic wave propagation through a turbulent medium is discussed. The present study utilizes the ultrasonic travel-time technique to diagnose a grid-generated turbulence. Travel-time variance is studied versus mean flow velocity, travel distance and outer turbulence scale. The effect of thermal fluctuations, which result in fluctuations of sound speed, is studied using a heated-grid experiment. Experimental data obtained using ultrasonic technique confirm numerical and theoretical predictions of nonlinear increase of the travel-time variance with propagation distance, which could be connected to the occurrence of caustics. The effect of turbulent intensity on the travel-time variance and appearance of caustics is studied. It is demonstrated experimentally that the higher turbulence intensity leads to the shorter distance, at which the first caustic occurs. The probability density for caustics appearance is analysed against the measured wave amplitude fluctuations. The analysis reveals that the region of high-amplitude fluctuations corresponds to the region where the probability of formation of random caustics differs from zero. Experimental results are in very good agreement with theoretical and numerical predictions.  相似文献   

19.
Th. M. M. Verheggen 《Physica A》1978,90(3-4):606-618
In this paper the problem of the mean power transmission for one-dimensional wave propagation in a random medium is studied. We use a cumulant technique valid for small k0Lc where measures the size of the fluctuations, Lc is the correlation length of the random wave number, and k0 is the undisturbed wave number. We obtain an integral expression for the mean transmitted power. It shows exponential decay for large width, and linear decay for small width. The relevant scale to measure the width of the slab is 2k200C(x)cos(2k0x)dx where C(x) is the autocorrelation of the random wave number.  相似文献   

20.
This research deals with the ultrasonic characterization of thermal damage in concrete. This damage leads to the appearance of microcracks which then evolve in terms of volume rate and size in the material. The scattering of ultrasonic waves from the inclusions is present in this type of medium. The propagation of the longitudinal wave in the heterogeneous media is studied via a homogenization model that integrates the multiple scattering of waves. The model allows us to determine the phase velocity and the attenuation according to the elements which make the medium. Simulations adapted to the concrete are developed in order to test the responses of the model. These behaviors are validated by an experimental study: the measurements of phase velocity and attenuation are performed in immersion, with a comparison method, on a frequency domain which ranges from 160 kHz to 1.3 MHz. The analysis of different theoretical and experimental results obtained on cement-based media leads to the model validation, on the phase velocity behavior, in the case of a damage simulated by expanded polystyrene spheres in granular media. The application to the case of a thermally damaged concrete shows a good qualitative agreement for the changes in velocity and attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号