首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of frequency gaps in the dispersion relation of periodic, quasi-periodic, and random photonic structures consisting of different arrangements of dielectric cylinders has been investigated. For TM polarization it was found that the formation and properties of gaps are strongly affected by Mie resonances of a single cylinder. Both the spectral position and size depend on the properties of this single scatterer. In contrast, for TE polarization no correlation between the scattering properties and bandgap formation was found, as Mie resonances are spectrally not well separated. For the inverted structure consisting of air cylinders in a dielectric material, the frequency gaps depend on the spatial arrangement of the cylinders because no pronounced Mie resonances exist in this case.  相似文献   

2.
Abstract

Ultrasound wave propagation in a nonhomogeneous linearly elastic layer of constant thickness immersed between homogeneous fluid and solid media is considered. The resonances (scattering poles) for the corresponding acoustic propagator are studied. It is shown that the distribution of the resonances depends on the smoothness of the coefficients that characterize physical properties of the layer and the ambient media. Namely, if the coefficients have jump discontinuities at the boundaries, then the resonances are asymptotically distributed along a straight line parallel to the real axis on the unphysical sheet of the complex frequency plane. On the contrary, if the coefficients are continuous, then it is shown that the resonances are asymptotically distributed along a logarithmic curve. The developed mathematical model is applied to the ultrasonic testing of the articular cartilage (AC) layer attached to the subchondral bone from one side and being in contact with a solution on the other side. It is conjectured that the spacing between two successive resonances may be sensitive to AC degeneration. The application of the obtained results to the development of ultrasonic testing for quantitative evaluation of AC is discussed.  相似文献   

3.
发展了一种多重散射方法研究声学覆盖层的半数值半解析模型,分析了影响轴对称空腔结构声学性能的主要能量耗散机制。在球坐标条件下推导出轴对称空腔结构的位移和应力场基函数,通过对空腔表面基函数的数值积分,得到散射波和入射波之间的传输矩阵方程,结合分层介质声传播理论计算了周期性空腔结构覆盖层的反射、透射和吸声性能。研究结果表明;空腔共振是低频能量耗散的主要形式,边界条件对材料空腔结构的谐振特性影响很大,利用双空腔耦合共振可以拓宽材料的低频吸声频带;背衬对材料的高频吸声影响较小,材料的高频能量损耗取决于空腔的散射和波型转换特性。   相似文献   

4.
张振方  郁殿龙  刘江伟  温激鸿 《物理学报》2018,67(7):74301-074301
声子晶体管路的带隙特性,可以实现管路系统在特定频率下的噪声控制.利用二维模态匹配法推导出单个内插扩张室元胞的传递矩阵,结合Bloch定理,得到声子晶体管路的能带结构计算方法;验证了二维方法在计算能带结构时的准确性.研究发现,内插扩张室声子晶体管路存在布拉格带隙和局域共振带隙.进一步研究了晶格常数以及内插管长度对能带结构的影响,结果表明,晶格常数主要控制布拉格带隙,而内插管长度对局域共振带隙有较大的影响,并研究了两种参数变化下的带隙耦合.研究结果可以为管路降噪设计提供新的思路.  相似文献   

5.
6.
We report on the quantum-mechanical displacement form factor in quasiperiodic and random heterostructures. A one-dimensional treatment is adopted to describe the longitudinal displacement along the growth axis. Elastic properties are assumed to be homogeneous, while the inhomogeneous mass density characterizes the heterostructure. In the low-frequency limit, the peak structure can be attributed to acoustic phonons, whereas for higher frequencies the quasiperiodic and random cases differ markedly. In the quasiperiodic case and constant momentum transfer, resonances separated by gaps occur and their number depends on the resolution in the frequency domain. The random case is dominated by an acoustic resonance becoming broader with increasing frequency.  相似文献   

7.
Pulse propagation in optical fibers may electrostrictively excite acoustic waves as a result of cladding Brillouin scattering, transversally propagating with respect to the fiber axis in the fiber's cladding, and mechanical coating. We show, for the first time to our knowledge, experimentally and theoretically that these transverse resonances within finite frequency ranges may cooperatively couple with the acoustic longitudinal modes of a fiber resonator, giving rise to stable trains of either spread or compressed three-wave Brillouin solitons and propose a first stability map for the rich four-wave dissipative dynamics.  相似文献   

8.
We investigate the properties of electromagnetic wave propagating in a one-dimensional photonic crystal (PC) consisting of two metamaterials with different dispersive model. The reflection gaps of metamaterials multilayer system are independent of the incident angle. Not only TE wave but also TM wave, the omnidirectional reflection gaps exhibit the same behavior with different incident angle for metamaterials as double negative material. We also observed that the frequency regimes of zero-transmission bands are different for TE and TM wave with the same incident angle, when one of metamaterials is the permittivity negative (ε < 0) and the other is the double negative. Correspondingly, we show that the result can be act as an efficient polarization splitter. At last, we discuss the resonant tunneling effect. If the total reflection condition is satisfied, the resonant tunneling effect is enhanced as the incident angle increases, even though the propagation wave is evanescent wave in the single layer medium.  相似文献   

9.
10.
In this article, the investigation of the Lamb wave propagation in two-dimensional phononic crystals (PCs) composed of an array of periodic coating on a thin plate is presented. Compared with the traditional PCs usually consist of cylindrical scatters with uniform coatings in their exterior structure, the newly exterior coating structures with periodic alternant arrangement of two different materials are proposed. The band structures are calculated using finite element method. We discover that a complete band gap can be exhibited at low frequency. Furthermore, for a finite PCs plate, the computed transmission and resonance spectra shown an evident resonance nature which can be directly related to formation of the low-frequency gaps. The effects of different material parameters and arrangement mode of coating on the acoustic energy transmission and attenuation are also studied. Finally, the experimental transmission spectrum of the periodic coating PCs are also presented and compared with the numerical results. This study will provide useful support to the design of tuning band gaps and isolators in the low-frequency range.  相似文献   

11.
二维组合宽带隙材料的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
运用FDTD(时域有限差分法)研究了弹性波/声波通过二维正方形排列的铁/水声子晶体的传播特性.发现铁/水声子晶体在高频范围存在完全带隙,软包层铁/水声子晶体在低频范围出现共振带隙,它们分别对应于不同的带隙形成机理.通过铁/水声子晶体和软包层铁/水声子晶体的组合,可以得到从高频到低频的组合宽带隙结构,从而达到在更宽频范围内控制弹性波传播的目的;而且通过调整包层的厚度、铁芯的大小、以及填充率等结构参数,可以有效地调节组合宽带隙的频率结构.  相似文献   

12.
《Comptes Rendus Physique》2016,17(5):543-554
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.  相似文献   

13.
Several versions of the dispersion formula governing the acoustic propagation in bubbly liquids are shown to exhibit acausal behavior. The cause of this behavior is due to the inappropriate application of a low frequency approximation in the determination of the extinction of the signal from radiative scattering. Using a corrected causal formula, several principles of wave propagation in bubbly media consistent with the general theory of wave propagation in dispersive media are demonstrated: There exist two precursors to any finite signal. Both propagate without regard to the source characteristics at velocities, frequencies, and amplitudes dependent wholly upon the characteristics of the medium supporting the wave motion. The first travels at the infinite frequency phase velocity that is coincident with the infinite frequency limit of the group velocity. That part of a propagating wave oscillating at the source frequency arrives at a time determined by the signal velocity. Analogous to the well known signal velocity of electromagnetic wave propagation in conducting media, the value of the signal velocity depends on the detailed structure of the dispersion formula in the complex frequency plane.  相似文献   

14.
The distribution of singular values of the propagation operator in a random medium is investigated, in a backscattering configuration. Experiments are carried out with pulsed ultrasonic waves around 3 MHz, using an array of 64 programmable transducers placed in front of a random scattering medium. The impulse responses between each pair of transducers are measured and form the response matrix. The evolution of its singular values with time and frequency is computed by means of a short-time Fourier analysis. The mean distribution of singular values exhibits a very different behaviour in the single and multiple scattering regimes. The results are compared with random matrix theory. Once the experimental matrix coefficients are renormalized, experimental results and theoretical predictions are found to be in a very good agreement. Two kinds of random media have been investigated: a highly scattering medium in which multiple scattering predominates and a weakly scattering medium. In both cases, residual correlations that may exist between matrix elements are shown to be a key parameter. Finally, the possibility of detecting a target embedded in a random scattering medium based on the statistical properties of the strongest singular value is discussed.  相似文献   

15.
16.
Modelling of wave propagation for modern high-frequency radio links must take into account the fluctuation phenomena caused by random changes of the medium's parameters. There are two factors that cause signals from transmitter to receiver to arrive via multiple random paths. The first is a result of scattering by boundaries and various obstacles, while the second is related to random changes in the refractive index of the medium. Similar phenomena are observed in underwater acoustic propagation. In this work the influence of both factors is demonstrated in a simple example when the propagation takes place above a perfectly reflecting surface in the presence of a randomly fluctuating medium.  相似文献   

17.
《Physics letters. A》2020,384(13):126253
This letter is concerned with acoustic wave propagation and transmission in acoustic waveguides with periodically grafted detuned Helmholtz resonators. The interplay of local resonances and Bragg band gaps in such periodic systems is examined. It is shown that, when the resonant frequencies of the resonators are tuned close to a Bragg band gap, the behavior of the Bragg band gap can be affected dramatically. Particularly, by introducing appropriately tuned resonators, the bandwidth of a Bragg band gap can be reduced to zero, leading to a very narrow pass band with great wave attenuation performance near both band edges. The band formation mechanisms of such periodic waveguides are further examined, providing explicit formulae to locate the band edge frequencies of all the band gaps, as well as the conditions to achieve very narrow pass bands in such periodic waveguides.  相似文献   

18.
Based on an equivalent medium approach, this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation, sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of micropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore, multiple scattering has been taken into account, which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.  相似文献   

19.
A new acoustic metamaterial plate is presented for the purpose of suppressing flexural wave propagation. The metamaterial unit cell is made of a plate with a lateral local resonance (LLR) substructure which consists of a four-link mechanism, two lateral resonators and a vertical spring. The substructure presents negative Young’s modulus property in certain frequency range. We show theoretically and numerically that two large low-frequency band gaps are obtained with different formation mechanisms. The first band gap is due to the elastic connection with the foundation while the second is induced by the lateral resonances. Besides, four-link mechanisms can transform the flexural wave into the longitudinal vibration which stimulates the lateral resonators to vibrate and to generate inertial forces for absorbing the energy and thus preventing the wave propagation. Frequency response function shows that damping from the vertical spring has little influence on the band gaps, although the damping can smooth the variation of frequency response (see the dotted line in Figs. 10 and 11). Increasing the damping of the lateral resonators may broaden the second band gap but deactivate its effect. This study provides guidance for flexibly tailoring the band characteristics of the metamaterial plate in noise and vibration controls.  相似文献   

20.
王盼盼  周晨  宋杨  张援农  赵正予 《物理学报》2015,64(10):100205-100205
从声波扰动介质中的电波波动方程出发, 使用时域有限差分(FDTD)方法, 结合声波传播的FDTD 模型, 构建了描述声波和电波相互作用的数值模型, 并运用该模型分析风场和温度对无线电声波探测系统的探测高度的影响. 数值模拟结果表明: 温度与风场剖面的存在改变声波和电波散射回波的传播轨迹; 温度梯度剖面主要影响声波的传播速度, 风场剖面导致作为电波散射体的声波波阵面的偏移, 降低电波散射回波的强度并改变回波路径, 使得接收数据减少, 限制无线电声波探测系统的探测高度; 在强风背景下, 若降低声波散射体高度, 电波散射回波“聚束点”的偏移会有较大的改善, 但同时意味着探测高度的降低. 为了改善风场背景下无线电声波探测系统的探测高度, 可以使用双基地雷达或者增大接收天线面积等方法来实现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号