首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MgO was incorporated into montmorillonite (MMT) though the controlled formation of Mg(OH)2 followed by calcination. The evidence for Mg2+ in MMT before calcination was concluded from TG curves where two different temperature ranges for Mg(OH)2 dehydroxylation suggested that the location of Mg2+ at its internal and external surfaces. FTIR by diffuse reflectance technique of calcined sample showed a typical MgO band. XRD indicated a decrease in structural order and no collapse of clay structure. The organic compounds adsorption to MMT modified with MgO as suggested by increased degradation temperatures occurred at internal and external clay surfaces besides in an area formed probably by MgO and MMT layers.  相似文献   

2.
Medium reactive magnesium oxide reacts incompletely with available water to form magnesium hydroxide. To enhance the hydration of medium reactive magnesium oxide, the effect of magnesium acetate as hydrating agent was studied. The extent to which different parameters (concentration of magnesium acetate, solution temperature and solid to liquid ratio of MgO to magnesium acetate) influence the hydration rate of a medium reactive industrial sample of magnesium oxide were evaluated. The degree of rehydration measured as percentage Mg(OH)2being formed, increases from approximately 56% using 0.5 M magnesium acetate solutions at 25°C to 64% at 50°C, to more than 70% at 70°C. The major part of rehydration of the medium reactive MgO sample occurs within the first few minutes of the reaction for all three temperatures studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
New solid compounds of Tb(III), Ho(III), Er(III) and Yb(III) with chrysin   总被引:1,自引:0,他引:1  
The time required for maximum hydration of MgO obtained from the calcination of magnesite was determined. The MgO samples were hydrated for different time intervals in both water and magnesium acetate. A thermogravimetric analysis (TG) method was used to determine the degree of hydration to Mg(OH)2. Increasing the hydration time, the degree of hydration of MgO and surface area of the formed Mg(OH)2 increased. A leveling effect was observed on the percentage Mg(OH)2 obtained from hydration in magnesium acetate, and an optimum amount of 85% was obtained after 500 min. For the hydration in water, the leveling effect was only observed after 800 min giving a maximum of 65% Mg(OH)2.  相似文献   

4.
Hydration of medium reactive magnesium oxide using hydration agents   总被引:1,自引:0,他引:1  
Water, magnesium acetate, magnesium chloride, acetic acid and hydrochloric acid were used as hydrating agents for an industrially obtained MgO sample. The influence of these different hydrating agents on the pH of the hydrating solution, degree of hydration to Mg(OH)2, and product surface area was studied as a function of the temperature of hydration. When compared to the hydration in water, all hydrating agents improved the degree of hydration between 5 and 50% at all temperatures. MgCl2 and a mixture of HCl and Mg(CH3COO)2 seemed to be the most effective hydrating agents below 60°C, while at temperatures above 60°C Mg(CH3COO)2 formed the largest percentage Mg(OH)2. Mg(CH3COO)2 was the hydrating agent that showed the strongest temperature dependence. The mechanism of the hydration reaction seems to be dependent of the availability of Mg2+ ions and the increased formation of Mg(OH)2 as temperature increases.  相似文献   

5.
The compounds of MgO–silica fume (SF) pastes constitute magnesium silicate hydrate (M–S–H) in a new generation of basic castables. However, Mg(OH)2 is a common reaction product with the formation of M–S–H. This study aims to reduce the formation of Mg(OH)2 in MgO–SF pastes. In this study, MgO powders were prepared by calcining magnesite at different temperatures and then mixed with SF and water to prepare MgO–SF pastes. The properties of MgO powders were characterized, and the pH values in the pore solutions of MgO–SF pastes were measured. The MgO–SF pastes cured for 90 days were calcined at 500, 700, 900 and 1200 °C, and the microstructure was characterized afterward. The results showed that both the reactivity of MgO powders and the pH value of the pore solution of MgO–SF pastes were diverse, which essentially depended on the grain sizes and the crystalline degree of MgO. Increasing the calcination temperature of MgO was beneficial to reduce the formation of Mg(OH)2 or even stop it when using MgO calcined at 1450 °C. Enstatite and forsterite formed for all MgO–SF pastes after calcination. However, the microstructure of MgO–SF paste with MgO calcined at 1450 °C was denser than others. MgO–SF pastes were suitable for the new-generation refractory castables. Notably, using MgO calcined at 1450 °C is more appropriate.  相似文献   

6.
The rise in the use of polycarbonate (PC) calls for the development of after-use treatments. In this work, we describe a process for obtaining bisphenol A (BPA), phenol and isopropenyl phenol (IPP) from PC by hydrolysis at temperatures between 300 and 500 °C. The experiments were carried out in a steam atmosphere in the presence of MgO, CaO, Mg(OH)2 or Ca(OH)2 as catalysts, respectively. The results were compared with the hydrolysis of PC in the absence of any catalysts. All of these catalysts accelerated the hydrolysis of PC drastically, with MgO and Mg(OH)2 being more effective than their Ca counterparts. The differences between oxides and hydroxides were negligible indicating the same mechanism for both, oxides and hydroxides. BPA was the main product at 300 °C, with a yield of 78% obtained in the presence of MgO. At 500 °C, BPA was mainly degraded to phenol and isopropenyl phenol (IPP). It can be shown that a combined process involving PC hydrolysis at 300 °C and BPA fission at 500 °C leads to high yields of phenol and IPP and the drastic decrease of residue.  相似文献   

7.
Summary Mg-Al hydrotalcite-derived oxides with a varying Mg/Al molar ratio, ranging from 2.6 to 3.2, were rehydrated in the vapor phase at different temperatures (20-90°C). The catalytic performance of the materials obtained was studied in the aldol condensation of acetone. The initial activity of the rehydrated catalysts depended strongly on the Mg/Al molar ratio and the activation temperature. It was found that the re-arrangement of active sites, leading to the reconstruction of hydrotalcite-like phase, occurred during the catalytic test.  相似文献   

8.
A new reaction of MgCl2·4H2O with CCl2F2 is investigated by DTA and TG from room temperature to 350 °C. It is observed that MgF2 was obtained between 252 and 350 °C, Below the temperature, MgCl2·4H2O dehydrates and hydrolyzes to MgCl2 and Mg(OH)Cl, which are the real reactants of the reaction with CCl2F2. The formation of MgF2 is ascribed to the reaction of MgCl2 and Mg(OH)Cl with HF, which forms by decomposition of CCl2F2 with the taking part in of H2O released from dehydration of hydrated magnesium chloride on the surface of MgCl2 and Mg(OH)Cl, which catalyzes the decomposition of CCl2F2 in this case. Consequently, the reactions are tested in the fluid-bed condition. It is found that MgF2 formed at temperatures down to 200 °C in a fluid-bed reactor. This reaction may be used as a method of disposing of the environmentally sensitive CCl2F2 (rather than release into the atmosphere). It is also a method for the preparation of MgF2.  相似文献   

9.
The solid-solid interactions between manganese and magnesium oxides in absence and in presence of small amounts of Li2O have been investigated. The molar ratios between manganese and magnesium oxides in the form of Mn2O3 and MgO were varied between 0.05:1 to 0.5:1. The mixed solids were calcined in air at 400-1000°C. The techniques employed were DTA, XRD and H2O2 decomposition at 20-40°C.The results obtained revealed that solid-solid interactions took place between the reacting solids at 600-1000°C yielding magnesium manganates (Mg2MnO4, Mg6MnO8, MgMnO4 besides unreacted portions of MgO, Mn2O3 and Mn3O4). Li2O-doping (0.75-6 mol%) of the investigated system followed by calcination at 600 and 800°C decreased progressively the intensity of the diffraction lines of Mn2O3 (Bixbyite) with subsequent increase in the lattice parameter 'a' of MgO to an extent proportional to the amount of Li2O added. This finding might suggest that the doping process enhanced the dissolution of Mn2O3 in MgO forming solid solution. This treatment led also to the formation of Li2MnO3. Furthermore, the doping with 3 and 6 mol% Li2O conducted at 800°C resulted in the conversion of Mn2O3 into Mn3O4, a process that took place at 1000°C in absence of Li2O. The produced Li2MnO3 phase remained stable by heating at up to 1000°C. Furthermore, Li2O doping of the investigated system at 400-1000°C resulted in a progressive measurable increase in the particle size of MgO.The catalytic activity measurements showed that the increase in the molar ratio of Mn2O3 in the samples precalcined at 400-800°C was accompanied by a significant increase in the catalytic activity of the treated solids. The maximum increase in the catalytic activity expressed as reaction rate constant measured at 20°C (k 20°C) attained 3.14, 2.67 and 3.25-fold for the solids precalcined at 400, 600 and 800°C, respectively. Li2O-doping of the samples having the formula 0.1 Mn2O3/MgO conducted at 400-600°C brought a progressive significant increase in its catalytic activity. The maximum increase in the value of k 20°C due to Li2O attained 1.93 and 2.75-fold for the samples preheated at 400 and 600°C, respectively and opposite effect was found for the doped samples preheated at 800°C.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
The effect of calcinations on the silica surface groups and thereby on the activity of Ziegler-Natta catalysts in ethylene homopolymerisation has been studied. Silica was calcined at different temperatures and treated with MgR2 and HCl. Silica surface groups were identified by using 1H MAS NMR and 13C and 29Si CP MAS NMR techniques. Magnesium, titanium and chlorine were measured by elemental analysis. Ziegler-Natta catalysts were prepared from these supports and subsequently used in ethylene homopolymerisation. Maximum activity was obtained with the catalyst based on 590 °C calcined silica. The results indicate that MgR2 reacts with siloxane-groups (Si-O-Si) in the 300 °C calcined silica, leaving the hydrogen-bonded hydroxyl-groups unreacted. Low activity Si-O-Ti(Cl)2-O-Si species are formed after reacting with TiCl4. The higher activity in the catalyst based on 590 °C calcined silica can be explained by the formation of -Si(R)-O-Si-O-TiCl3 groups, originating from the siloxane bridges which cannot form in 300 °C calcined silica. Other explanations for the higher activity are a higher Mg/Ti ratio or small amounts of crystal water formed in the 590 °C calcined silica.  相似文献   

11.
Summary Reactions between graphite and magnesium, silicon, vanadium and aluminium oxides in graphite electrodes have been investigated by spectrochemical and X-ray diffraction methods. Samples were ignited by means of an evaporator up to controlled temperatures. In the range of 1000–1900°C magnesium oxide does not react with graphite. Aluminium trioxide first forms -Al2O3 and at 1900°C Al4C3. Silicon dioxide forms silicon carbide at about 1400°C. Vanadium pentoxide is first reduced to VO2 and than at higher temperatures (1200° C) forms -VC. At about 1400° C MgO and SiO2 mixed with graphite powder form magnesium silicate, Mg2SiO4, and this silicate was stable at higher temperatures (up to 2000°C).
Hochtemperaturreaktionen in spektralanalytisch wichtigen SystemenII. Reaktionen von Graphit mit den Oxiden von Magnesium, Silicium, Vanadium und Aluminium
Zusammenfassung Die Reaktionen wurden durch Spektralanalyse und Röntgendiffraktometrie untersucht. Die Proben wurden in einem Evaporator auf kontrollierte Temperaturen erhitzt. Im Bereich von 1000–1900° C reagiert MgO nicht mit Graphit. Al2O3 bildet zunächst -Al2O3 und bei 1900°C Al4C3. SiO2 bildet bei etwa 1400°C SiC. V2O5 wird zunächst zu VO2 reduziert und geht dann bei höheren Temperaturen (1200°C) in -VC über. MgO und SiO2 im Gemisch mit Graphit bilden Mg2SiO4, das bei hohen Temperaturen (bis 2000°C) noch beständig ist.
  相似文献   

12.
An autoclave hypercritical drying procedure has been used to prepare precursors of MgO from Mg(OCH3)2. This material was prepared with a specific surface area of 1200 m2 g 1. The dehydrated materials consisted of much smaller crystallites than conventionally prepared MgO and were free of OCH3 groups. The precursors and samples of magnesium oxide were taken for experimental evaluation of their reactivity with mustard. The largest percentage of the conversion mustard into non-toxic products after the elapse of the reaction was 77%.  相似文献   

13.
The thermal reactivities of MgV6O16.9H2O, Mg(HV6O16)2.17H2O and their anhydrous forms were studied within the temperature range 20–1000°C. Both hydrates are thermally unstable. After dehydration, they decompose to V2O5 and Mg(VO3)2. The mixture of decomposition products of MgV6O16.9H2O is stable. After decomposition of the second compound, additional reactions take place above 750°C.
Zusammenfassung Innerhalb des Temperaturbereiches 20–1000° wurde die thermische Reaktivität von MgV6O16.9H2O, Mg(HV6O16)2.17H2O sowie deren wasserfreier Formen untersucht. Beide Verbindungen sind wärmaunbeständig. Nach der Dehydratation zerfallen sie in V2O5 und Mg(VO3)2. Das Gemisch der Zersetzungsprodukte von MgV6O16.9H2O is beständig. Nach der Zersetzung der zweiten Verbindung treten oberhalb 750° weitere Reaktionen auf.
  相似文献   

14.
Two different orientational assemblies of MgO nanosheets were obtained by tuning the polarity of solvents during the drop deposition method. Different UVvisible diffuse reflectance spectra were recorded and are related to the orientations of the exposed facets.  相似文献   

15.
Forsterite (Mg2SiO4) powders were prepared by mixing SiCl4 with aqueous solutions of either Mg(CH3COO)2·4H2O or Mg(NO3)2·6H2O and heating the powdered gel. The powders were characterised using thermal analysis (DTA and TGA), X-ray diffraction (XRD), nitrogen adsorption surface area analysis (BET) and transmission electron microscopy (TEM). On heating, MgO and enstatite (MgSiO3) were observed in addition to forsterite. On heating to 1200°C, forsterite was the dominant phase in the powders produced from Mg(NO3)2·6H2O, and MgO was the dominant phase in the powders produced from Mg(CH3COO)2·4H2O. The primary particle sizes of these powders were between 100 and 500 nm, which remained the same on heat treatment. However, higher temperatures gave rise to an increase in the size and densities of the agglomerates of primary particles.  相似文献   

16.
Novel self-assembled MgO nanosheet and its precursors   总被引:8,自引:0,他引:8  
A novel self-assembled microstructure, nestlike Mg(5)(CO(3))(4)(OH)(2).4H(2)O spheres, is formed by a self-assembly of nanosheets in the hydrothermal process. MgO with the similar morphology can be obtained by calcination of nestlike Mg(5)(CO(3))(4)(OH)(2).4H(2)O. MgO precursors with a uniform, ellipsoid-shaped, and smooth surface or flowerlike architecture, built by individual thin sheets, can be well-obtained by carefully controlling pH values of the initial reaction solution. The nestlike MgO exhibits a unique geometrical shape; its surface is composed of uniform MgO nanosheets. The unique MgO microstructure with high surface areas may possess promising applications as the sorbent for chemisorption and destructive adsorption of various pollutants.  相似文献   

17.
Nucleation of Mg(OH)2 was investigated by measuring the electrical conductivity and pH of the Mg(NO3)2 reaction solution to which ammonia containing different amounts of NH4NO3 was added. NH4NO3 increases solubility and slows down precipitation of Mg(OH)2 in the system. Data are presented on the influence of NH4NO3 on the solubility of Mg(OH)2 at 25°C. The phenomena observed can be explained by the solvation effect of nitrate ions brought to the system with the addition of ammonium nitrate, which was proved by NMR spectroscopy. When the mass fraction of NH4NO3 exceeds 15 %, homogeneous nucleation does not proceed. It was found that seeding of the system with Mg(OH)2 crystals only influenced the rate of Mg(OH)2 crystallisation, not the size and shape of the crystals. Primary crystals are smaller than 0.1 μm. The large difference in the surface energy of individual crystal planes leads to oriented agglomeration. This process is accelerated in a pressure reactor at 130°C. The resulting polycrystals are hexagonal plates 0.2 μm thin with a diameter of 1–2 μm. Under variable reaction conditions, agglomerates as big as 30 μm can be prepared.  相似文献   

18.
A Mg2+-induced vesicle phase was prepared from a mixture of tetradecyldimethylamine oxide (C14DMAO) and magnesium dodecyl sulfate [Mg(DS)2] in aqueous solution. Study of the phase behavior shows that at the appropriate mixing ratios, Mg2+–ligand coordination between C14DMAO and Mg(DS)2 results in the formation of molecular bilayers, in which Mg2+ can firmly bind to the head groups of the two surfactants. The area of the head group can be reduced because of the complexation. In this case, no counterions exist in aqueous solution because of the fixation of Mg2+ ions to the bilayer membranes. Therefore, the charges of the bilayer membranes are not shielded by salts. The birefringent solutions of Mg(DS)2 and C14DMAO mixtures consist of vesicles which were determined by transmission electron microscopy (TEM) images and rheological measurements. Magnesium oxide (MgO) nanoplates were obtained via the decomposition of Mg(OH)2 which were synthesized in Mg2+-induced vesicle phase which was used as the microreactor under the existence of ammonia hydroxide. The morphologies and structures of the obtained MgO nanoplates have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the crystal growth is along the (1 1 1) direction which can be affected by the presence of a vesicle phase having a fixation of Mg2+ ions to the bilayer membranes.  相似文献   

19.
The influence of reaction temperature and time on the hydrothermal dissolution-precipitation synthesis of hydrotalcite was investigated. Untreated MgO, Al(OH)3 and NaHCO3 were used. An industrially beneficial, economically favourable, environmentally friendly, zero effluent synthesis procedure was devised based on green chemistry principles, in which the salt-rich effluent typically produced was eliminated by regenerating the sodium bicarbonate in a full recycle process. It was found that the formation of hydromagnesite dominates at low temperatures independent of reaction time. With an increase in reaction time and temperature, hydromagnesite decomposes to form magnesite. At low temperatures, the formation of hydrotalcite is limited by the solubility of the Al(OH)3. To achieve a hydrotalcite yield of 96%, a reaction temperature of 160°C for 5?h is required. A yield higher than 99% was achieved at 180°C and 5?h reaction time, producing an layered double hydroxide with high crystallinity and homogeneity.  相似文献   

20.
Highly selective transformation of poly[(R)-3-hydroxybutyric acid] (PHB) into trans-crotonic acid was achieved by thermal degradation using Mg compounds: MgO and Mg(OH)2 as catalysts. Through catalytic action, not only the temperature and Ea value of degradation were lowered by 40-50 °C and 11-14 kJ mol−1, respectively, but also significant changes in the selectivity of pyrolyzates were observed. Notably, Mg(OH)2 showed nearly complete selectivity (∼100%) to trans-crotonic acid. Kinetic analysis of TG profiles revealed that the catalytic thermal degradation of PHB was initiated by some random degradation reactions, followed by the unzipping β-elimination from crotonate chain-ends as a main process. It was suggested that the Mg catalysts promote the totality of the β-elimination reactions by acting throughout the beginning and main processes, resulting in a lowering in the degradation temperature and the completely selective transformation of PHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号