首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
Medium reactive magnesium oxide reacts incompletely with available water to form magnesium hydroxide. To enhance the hydration of medium reactive magnesium oxide, the effect of magnesium acetate as hydrating agent was studied. The extent to which different parameters (concentration of magnesium acetate, solution temperature and solid to liquid ratio of MgO to magnesium acetate) influence the hydration rate of a medium reactive industrial sample of magnesium oxide were evaluated. The degree of rehydration measured as percentage Mg(OH)2being formed, increases from approximately 56% using 0.5 M magnesium acetate solutions at 25°C to 64% at 50°C, to more than 70% at 70°C. The major part of rehydration of the medium reactive MgO sample occurs within the first few minutes of the reaction for all three temperatures studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Thermogravimetric analysis is used to determine the amounts of Mg(OH)2 and Mg(CH3COO)2in a mixture thereof. The application and suitability of different analysis methods are discussed. In the first method the mass losses in the temperature ranges as indicated by the decomposition of the pure compounds were used. Results obtained using these temperature ranges were unusable. The percentage mass losses due to the decomposition of Mg(OH)2 and Mg(CH3COO)2 were then determined in a second method using the minimum in the derivative mass vs. temperature curves. The results obtained by this method compared well with the actual values for mixtures containing more than 15% magnesium acetate. The third method employed the total experimental mass loss of both decomposition reactions. The results obtained using this method compared well to the actual values, giving a R 2 value of more than 0.99. This method of using the total mass losses can however only be used for binary mixtures that consist only of magnesium hydroxide and magnesium acetate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
New solid compounds of Tb(III), Ho(III), Er(III) and Yb(III) with chrysin   总被引:1,自引:0,他引:1  
The time required for maximum hydration of MgO obtained from the calcination of magnesite was determined. The MgO samples were hydrated for different time intervals in both water and magnesium acetate. A thermogravimetric analysis (TG) method was used to determine the degree of hydration to Mg(OH)2. Increasing the hydration time, the degree of hydration of MgO and surface area of the formed Mg(OH)2 increased. A leveling effect was observed on the percentage Mg(OH)2 obtained from hydration in magnesium acetate, and an optimum amount of 85% was obtained after 500 min. For the hydration in water, the leveling effect was only observed after 800 min giving a maximum of 65% Mg(OH)2.  相似文献   

4.
Summary Magnesium oxide was produced through calcination of magnesite ore. A rehydration percentage of MgO to Mg(OH)2 of higher than 60% is obtained using calcination temperatures of 1000°C and below. At these temperatures medium reactive MgO was formed. The extend to which dead burnt MgO (obtained after calcination at 1200°C and higher) may be rehydrated is dependent on the calcination time, but even after 1 h and using magnesium acetate as a hydrating agent only 40% of the initial product has rehydrated to Mg(OH)2. After 4 and more hours of calcinations at 1200°C, a maximum of approximately 14% of the initial MgO is rehydrated back to Mg(OH)2. Thermogravimetric analysis was performed on the various compounds to determine the amounts of Mg(OH)2 that formed.  相似文献   

5.
The complex formation and dehydration processes in the system M(CH3COO)2? CH3OH? H2O have been studied by the methods of the physico-chemical analysis at 25°C; (M = Mg2+, Ca2+ and Ba2+). In the Mg(CH3COO)2? CH3OH? H2O system. methanol was found to behave as a solvent in which complex formation reactions take place, including also methanolation of Mg2+. The fields of equilibrium existence of two new compounds have been found: Mg(CH3COO)2 · 3H2O · CH3OH and Mg(CH3COO)2 · 1,5 CH3OH. In the systems M(CH3COO)2? CH3OH? H2O (M = Ca2+, Ba2+), methanol was found to react as a dehydrating reagent.  相似文献   

6.
The complexes of α-alanine-salicylal Schiff base of magnesium (α-ASSM), β-alanine-salicylal Schiff base of magnesium (β-ASSM) and taurine-salicylal Schiff base of magnesium (TSSM) were synthesized. The formulae of the complexes are Mg[OC6H4CHNCH(CH3)COO]·2H2O, Mg[OC6H4CHNCH2CH2COO]·2H2O and Mg[OC6H4CHNCH2CH2SO3]·2H2O. The crystal structure belongs to orthorhombic system with the lattice parameters: a=1.6954 nm, b=2.0873 nm and c=2.3037 nm for the β-ASSM, to orthorhombic system with the lattice parameters: a=1.5586 nm, b=1.8510 nm and c=2.6240 nm for the β-ASSM, to monoclinic system with the lattice parameters: a=1.3232 nm, b=1.4960 nm, c=2.1543 nm and β=98.04° for the TSSM, respectively. The results of the thermal decomposition processes and infrared spectra of the complexes show that the complexes may possess different coordination structures.  相似文献   

7.
The solubility of components in the system Mg(ClO3)2-2NH2C2H4OH · H3C6H5O7-H2O was studied from the complete freezing temperature ?59.4°C to 20.0°C. A polythermal solubility diagram was constructed, in which the crystallization fields were determined for ice, Mg(ClO3)2 · 16H2O, Mg(ClO3)2 · 12H2O, Mg(ClO3)2 · 6H2O, 2NH2C2H4OH · H3C6H5O7 · H2O, 2NH2C2H4OH · H3C6H5O7, and two new compounds, [(HOC(CH2COOH)2COO)2Mg · 2H2O] and [HOC(CH2COO)2MgCOOH · 2H2O], which were identified by chemical and physicochemical analysis methods.  相似文献   

8.
Ternary Acetates of the Lanthanides with Cesium: Dimers in CsLu(CH3COO)4 and Trimers in Cs2[Lu3(CH3COO)10(OH)(H2O)]. Synthesis, Crystal Structures, Thermolysis Single crystals of CsLu(CH3COO)4 and Cs2[Lu3(CH3COO)10(OH)(H2O)] were obtained from an aqueous solution of lutetium and cesium acetate in a 1:1 molar ratio. The crystal structures (CsLu(CH3COO)4: monoclinic, P21/n (no. 14), Z = 8, a = 1 293.1(2), b = 1 323.8(2), c = 1 622.5(3) pm, β = 92.01(2)°, Vm = 208.97(6) cm3/mol, R = 0.056, Rw = 0.034; Cs2[Lu3(CH3COO)10(OH)(H2O)]: monoclinic, C2/c (no.15), Z = 4, a = 2 138.5(6), b = 1 378.0(3), C = 1 482.9(4) pm, β = 106.15(2)°, Vm = 632.0(3) cm3/mol, R = 0.049, Rw = 0.036) were determined from four-circle-diffractometer data. The structures consist of dimers and trimers, respectively, that are built by bridging acetate groups. These units are fragments of the infinite chains of the Ho(CH3COO)3 type of structure. The isotypic compounds CsM(CH3COO)4 with M=Eu? Lu were synthesized and characterized by the X-ray Guinier technique. The thermal decomposition of CsLu(CH3COO)4 was examined with thermoanalytical methods (TG/DSC with coupled gas analysis) and the Guinier-Simon technique: it decomposes at 260°C in an endothermic reaction to Lu2O3 and Cs2CO3.  相似文献   

9.
Structure and Thermal Decomposition of Bis(triethanolamine)copper(II) Acetate [Cu{N(CH2CH2OH)3}2](CH3COO)2 Bis(triethanolamine)copper(II) acetate [Cu{N · (CH2CH2OH)3}2](CH3COO)2 was prepared using the basic components; the structure was determined by single crystal X-ray diffraction. The complex crystallizes in the monoclinic space group P21/c with a = 9.101 Å, b = 13.136 Å, c = 9.819 Å, β = 111.63°. Details of the synthesis, X-ray data, and the thermal decomposition are reported.  相似文献   

10.
This study investigated the synthesis of the biocatalyst, magnesium 2,6‐di‐tert‐butyl‐4‐methylphenoxide (Mg(BHT)2) complex, and the ring‐opening polymerization (ROP) of ε‐caprolactone (CL). The complex demonstrates high catalytic activity and controllable of molecular weight for the ROP of CL in tetrahydrofuran at room temperature, even when polymerization was performed under air. Before this study, the polymerization of CL had never been performed using a magnesium catalyst under air at room temperature. Various forms of alcohols with different purposes were also used as initiators with Mg(BHT)2. The results show that the magnesium complex acts as a perfect catalyst because of its high catalytic activity and control ability without any cytotoxicity in the polymerization of CL, making it suitable for biomedical applications. In addition, nanoparticle formation, cytotoxicity, and phototoxicity of tri‐2‐hydroxyethyl ester [Ce6‐(CH2CH2OPCL)3] were also studied in this article and Ce6‐(CH2CH2OPCL)3 formed nanoparticle can act as a nanophotosensitizer for photodynamic therapy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Pure anhydrous Cu(CH3COO)2 was obtained both, by thermal dehydration of Cu(CH3COO)2 · H2O and by drying a commercially purchased mixture of Cu(CH3COO)2 · H2O and Cu(CH3COO)2 in a nitrogen atmosphere using P2O5 as drying agent. The crystal structure was solved ab initio from synchrotron X‐ray powder diffraction (XRPD) data at 150 °C and from laboratory XRPD data at ambient conditions and found to be isotypic to anhydrous chromium(II), molybdenum(II) and rhodium(II) acetate. Cu(CH3COO)2 crystallizes in space group P1 (no. 2) with lattice parameters of a = 5.1486(3) Å, b = 7.5856(6) Å, c = 8.2832(6) Å, α = 77.984(4)°, β = 75.911(8)°, γ = 84.256(6)° at ambient conditions. Cu2(CH3COO)4 paddle wheels with short (2.6 Å) Cu–Cu distances form chains in a direction, which is the main motif in the crystal structure. Due to their identical structural main motif Cu(CH3COO)2 · H2O and Cu(CH3COO)2 exhibit a similar bluish‐green color, almost identical UV/Vis spectra and comparable magnetic properties. The temperature dependent magnetic susceptibility also indicates only weak inter‐dimer spin exchange between neighbouring Cu2(CH3COO)4 paddle wheels.  相似文献   

12.
Three flavonoid copper(II) complexes Cu2(quercetin)(CH3COO)3(CH3OH) ( 1 ), Cu(anthrarufin)(CH3COO)·1/2H2O ( 2 ) and Cu(naringin)(OCH3)(CH3OH)2 ( 3 ) have been synthesized and characterized by elemental analysis, IR, electronic absorption and EPR (X‐band) spectroscopy. The complexes have a strong protective action over the Δsod1 mutant of S. cerevisiae against reactive oxygen radicals generated by an external source of free radicals (H2O2 or the superoxide‐generating, menadione). On the other hand, the complexes cleave DNA efficiently even in the absence of reducing agents. The main reactive oxygen species responsible for the DNA strand cleavage have been determined using radical scavengers. A probably mechanism of the DNA damage is proposed.  相似文献   

13.
Thiomethylmercury chlorides 2 Hg(CH2SMe)Cl · HgCl2 and Hg(CH2SPh)Cl react with magnesium in thf to give the Grignard compounds Mg(CH2SR)Cl (R = Me ( 1 ), Ph ( 2 )) in nearly quantitative yields. From thf/n‐hexane solutions of 2 precipitate at –40 °C colorless crystals of the composition Mg(CH2SPh)Cl · 3.5 thf ( 2 ′). X‐ray structure determination revealed, that the unit cell contains separated molecules of [Mg(CH2SPh)2(thf)3] and [MgCl2(thf)4]. In the [Mg(CH2SPh)2(thf)3] molecules magnesium is distorted trigonal‐bipyramidally coordinate. Two PhSCH2 and one thf ligand occupy the equatorial positions and two further thf ligands the apical ones. In the [MgCl2(thf)4] molecules Mg displays an octahedral coordination with chloro ligands in mutual trans position. Temperature dependent NMR measurements of 2 reveal that in thf the Schlenk equilibrium operates; the composition of the equilibrium mixture at room temperature was estimated to be 89% Mg(CH2SPh)Cl and 11% Mg(CH2SPh)2.  相似文献   

14.
New zinc acetate based complex compounds (of general formula Zn(CH3COO)2·1?2L·nH2O) containing one or two molecules of urea, thiourea, coffeine and phenazone were prepared namely: Zn(CH3COO)2·2.5H2O, Zn(CH3COO)2·2u·0.5H2O, Zn(CH3COO)2·tu·0.5H2O, Zn(CH3COO)2·2tu, Zn(CH3COO)2·cof·2.5H2O, Zn(CH3COO)2·2cof·3.5H2O, Zn(CH3COO)2·2phen·1.5H2O. The compounds were characterized by IR spectroscopy, chemical analysis and thermal analysis. Thermal analysis showed that no changes in crystallographic modifications of the compounds take place during (heating in nitrogen before) the thermal decompositions. The temperature interval of the stability of the prepared compounds were determined. It was found that the thermal decomposition of hydrated compounds starts by the release of water molecules. During the thermal decomposition of anhydrous compounds in nitrogen the release of organic ligands take place followed by the decomposition of the acetate anion. Zinc oxide and metallic zinc were found as final products of the thermal decomposition of the zinc acetate based complex compounds studied. Carbon dioxide and acetone were detected in the gaseous products of the decomposition of the compounds if ZnO is formed. Carbon monoxide and acetaldehyde were detected in the gaseous products of the decomposition, if metallic Zn is formed. It is supposed that ZnO and Zn resulting from Zn acetate complex compounds here studied, possess different degree of structural disorder. Annealing takes place by further heating above 600°C.  相似文献   

15.
Summary of main observation and conclusion A series of electrospun LaCoO3 perovskites derived from CoX2 (X =CH3COO-,NO3-) were prepared and investigated for total propane oxidation.It is shown that pure rhombohedral perovskite LaCoO3 from Co(CH3COO)2 can be obtained at a relatively low temperature,400 ℃,benefitting from the complexation effect of CH3COO-.On the other hand,CH3COO-can accelerate the complete decomposition of polymer.The low-temperature process can protect LaCoO3 nanoparticles from growing up.  相似文献   

16.
A detailed study of the solution chemistry and mass spectrometry of six carboxylato-organogermanium compounds in aqueous solution has been carried out using electrospray ionization and MSn techniques. The different types of hydrolysis products and their probable structures, which include the oligomers and their fragment ions plus water adduct ions formed by ion-molecule reactions, are presented, e.g., HO-cyclic-(-Ge(O)CH2CH2COO) A, HO-cyclic-(-Ge(O-cyclic-(Ge(O)CH2CH2COO)CH2CH2COO) B, OGeO-cyclic-(-Ge(OH)CH2CH2COO) C, and CH=CHGeO-cyclic-(-Ge(OH)CH2CH2COO) D, etc. The proposed cyclic structures are confirmed by theoretical calculations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Summary The solubility isotherms of the systems Cd(HCOO)2-CS(NH2)2-CH3OH and Cd-(CH3COO)2-CS(NH2)2-CH3OH have been investigated at 25°C. Reagents for the equilibrium existence of the salts Cd(HCOO)2, Cd(HCOO)2·2CS(NH2)2, CS(NH2)2, Cd(CH3COO)2, Cd(CH3COO)2·CS(NH2)2, and Cd(CH3COO)2·2CS(NH2)2 are found. The preparation of CdS by thermal decomposition of double salts and from saturated solutions by the dip technique are discussed.
Herstellung von CdS durch thermische Zersetzung von Doppelsalzen und gesättigten Lösungen der Systeme Cd(HCOO)2-CS(NH2)2-CH3OH und Cd(CH3COO)2-CS(NH2)2-CH3OH
Zusammenfassung Untersucht werden die Löslichkeitsisothermen der Systeme Cd(HCOO)2-Cs(NH2)2-CH3OH und Cd(CH3COO)2-CS(NH2)2-CH3OH bei 25 °C. Die Kristallisationsfelder der Salze Cd(HCOO)2, Cd(HCOO)2·2CS(NH2)2, CS(NH2)2, Cd(CH3COO)2, Cd(CH3COO)2·CS(NH2)2 und Cd(CH3COO)2·2CS(NH2)2 werden bestimmt. Die Herstellung von CdS durch thermische Zersetzung von Doppelsalzen und gesättigten Lösungen anhand des Tauchverfahrens wird diskutiert.
  相似文献   

18.
Two synthetic routes including Mg doping and MgO-surface modification were applied to the preparation of LiCoO2 showing enhanced reversible cycling behaviour as cathode material in lithium ion batteries. Mg-doped LiCoO2 was obtained by the citrate precursor method in the temperature range 750–900°C. The surface of LiCoO2 was modified by coating with Mg(CH3COO)2 and subsequent heating at 600°C. XRD, chemical oxidative analysis and electron paramagnetic resonance (EPR) of Ni3+ spin probes were used to characterize the Mg distribution in LiCoO2. Substitution of Co by Mg in the CoO2-layers was found to have a positive effect on the cycling stability, while Mg dopants in LiO2-layers did not influence the capacity fade. The accumulation of MgO on the surface of LiCoO2 improves the cycling stability without loss of initial capacity.  相似文献   

19.
Thermal analysis of magnesium tris(maleato) ferrate(III) dodecahydrate has been studied from ambient to 700°C in static air atmosphere employing TG, DTG, DTA, XRD, Mössbauer and infrared spectroscopic techniques. The precursor decomposes to iron(II) intermediate species along with magnesium maleate at 248°C. The iron(II) species then undergo oxidative decomposition to give α-Fe2O3 at 400°C. At higher temperatures magnesium maleate decomposes directly to magnesium oxide, MgO, which undergoes a solid state reaction with α-Fe2O3 to yield magnesium ferrite (MgFe2O4) at 600°C, a temperature much lower than for ceramic method. The results have been compared with those of the oxalate precursor.  相似文献   

20.
Pyrochlore free Pb(Mg1/3Nb2/3)O3 (PMN) thin films were prepared from mixed-metal precursors solutions using the sol-gel process. Lead acetate [Pb(CH3COO)2], magnesium acetate [Mg(CH3COO)2] and niobium ethoxide [Nb(C2H5O)5] were used as starting materials, while 2-isopropoxy-ethanol was chosen as solvent. The reactivity of the precursors was investigated in order to understand and control the process and thus to prevent the contamination of the PMN with the pyrochlore phase. The solution was spin-coated on TiO2/Pt/TiO2/SiO2/Si substrate. The thin films were characterized by SEM and XRD while dielectric measurements were performed on the bulk ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号